CLASS 10 ACADEMIC PROGRAM-2020

MATH

Lecture	:	M-22
Chapter 8	:	Circle

Poll Question 01

 \Box

Math Chapter 8 : Circle

Poll Question 03

Distance between the centers of two circles touched internally is 1cm. Radius of the bigger circle is 4cm. Then what is the diameter of smaller circle. (a) 5cm RZ = 4Cm 4470 (b) 3cm 16cm 4210, $n_1 - n_2 = 1$ (d) 10cm4-R2 2] = R, lath Chapter 8 : Circle

Chapter 8 : Circle

Theorem 25:

The tangent drawn at any point of a circle is perpendicular to the radius through the point of contact of the tangent.

Theorem-26:

If two tangents are drawn to a circle from an external point, the distance from that point to the points of contact are equal.

DOPB and DOAP

NOB= OA= radius

vop common side

ZOBP=LOAP=90°

: DOPB = DOAP;[

Math

Chapter 8 : Circle

C.PA=PB

PA=PB

sinclu del

Theorem-27:

If two circles touch each other externally, the point of contact of the tangent and the centers are collinear. touched externally 0 Q touched internally Math Chapter 8 : Circle

00

Corollary 11 & 12:

Corollary-11: If two circles touch each other externally, the distance between their centers is equal to the sum of their radii.

Corollary-12. If two circles touch each other internally, the distance between their centers is equal to the difference of their radii.

AB=Rg+R2

A

AB = RJ-R2

Chapter 8 : Circle

Math

Math Chapter 8 : Circle

1. Two tangents are drawn from an external point P to the circle with center O. Prove that OP is the perpendicular bisector of the chord through the touch points. We have to proof AD=BD А LADP=LBDP=90 Similanly, 0 PZJOBP 4 SBDP VPA=PB LADP = LBDP LAPD = LBPD LAPD = LBPD But, LADP+LBDP=180 PD common side LADP + LADP =]80" ... SADP ZABDP; [SAS] 2LADP = 180" Math -AD-BI LADP = 90 Chapter 8 : Circle

2. Prove that, if two circles are concentric and if a chord of the greater circle touches the smaller, the chord is bisected at the point of contact.

3. AB is a diameter of a circle with center at O and BC is a chord equal to its radius. If the tangents drawn at A and C meet each other at the point D. Prove that, ACD is an equilateral triangle. BC = OC = OBD= 90 JACD is an equilaternel LOCB=LOBC=LBOC=60° triangle. OA=OC=Tradius LOAC=LOCA= 30" Math Chapter 8 : Circle

6. Given. O is the center of the circle and two tangents PA and PB touches the circle at the point A and B respectively. Prove that, PO is the bisector of $\angle APB$. We have to proof/LAPO=LBPO

P = AOBF

- LAPO=/BPO

А

7

В

Math

Chapter 8 : Circle

