بِسْمِ اللهِ الرَّحْمٰنِ الرَّحِيْمِ

বিস্মিল্লাহির রাহ্মানির রাহীম

54W

একাডেমিক এন্ড এডমিশন কেয়ার

Class Twelve: H.Math (Chapter-05)

Binomial theorem Lecture: HM-07

Binomial Expression:

A polynomial equation with two terms usually joined by a plus or minus sign is called a binomial expression:

Example:
$$x + y$$
, $3x + 2$, $ax + \frac{c}{dy}$

In this case, multiplication/division of two terms is not a binomial

Example:
$$\frac{x}{y}$$
, xy , ax^3

- **♦** Discussion about terms in binomial expansion:
- In the expansion of $(a + x)^n$
- If n is non-negative whole number then number of terms will be (n + 1)
- If *n* is negative or fractional then term number of terms will be ∞ [Here considering the conditions |x| < a or |x| > a the expansion is to be done]
- (a + b ... upto r number)ⁿ then number of terms $^{n+r-1}C_{r-1}$
- In expansion of $(a + x)^n$, (r + 1)th term, $T_{r+1} = {}^nC_r$ a^{n-r} . x^r
- Middle term: In case of $(a + x)^n$, if n is even, middle term is $(\frac{n}{2} + 1)$ th term and if n is odd, middle terms

are
$$\left(\frac{n+1}{2}\right)$$
 th and $\left(\frac{n+1}{2}+1\right)$ th

- If ${}^{n}C_{x} = {}^{n}C_{y}$ and $x \neq y$, then n = x + y.
- In expansion of $(a + x)^n$, ratio of (r + 1) th term and r- th term, $\frac{T_{r+1}}{T_r} = \frac{n-r+1}{r} \cdot \frac{x}{a}$

- x+y
- x y
- ax + y
- $\bullet cx dy$

•
$$x^2 + y^2$$

•
$$x - y^3$$

•
$$ax^2 + v^3$$

•
$$x^{2} + y^{2}$$

• $x - y^{3}$
• $ax^{2} + y^{3}$
• $cx^{4} - dy^{2}$

Combination

$${}^nC_r = \frac{n!}{(n-r)!}$$

$${}^{n}C_{x} = {}^{n}C_{y} - n = x + y$$

Poll Question 01

☐ Which one is not a binomial expression?

(i)
$$a + bx$$

(ii)
$$b + \frac{8}{3y}$$

(iii)
$$ab + xy + 2$$

(i)
$$a + bx$$
 (ii) $b + \frac{8}{3y}$ (iii) $ab + xy + 2$ (iv) $ax^2 + \frac{cy^2}{dz^{-3}}$

গাণিতিক আরোহ বিধিঃ

1. আরোহ বিধি ও আরোহ পদ্ধতি:

গাণিতিক আরোহ বিধি (Principle of Mathematical Induction) ঃ যদি $\mathbb N$ স্বার্ভাবিক সংখ্যার সেট এবং অপর একটি সেট $S \subset \mathbb N$ এরূপ হয় যে $1 \in S$ এবং (ii) $m \in S$ হলে, $m+1 \in S$ (যেখানে $m \in \mathbb N$) । তাহলে, $S = \mathbb N$, এর একটি মৌলিক স্বীকার্য। এ স্বীকার্যকে গাণিতিক আরোহ বিধি বলা হয়।

গাণিতিক আরোহ পদ্ধতিঃ চলরাশি স্বাভাবিক সংখ্যা $n\in\mathbb{N}$ সম্বলিত কোন উক্তি যদি n=1 এর জন্য সত্য হয় এবং উক্তিটি $n=m\in\mathbb{N}$ এর জন্য সত্য ধরে যদি তা $n=m+1\in\mathbb{N}$ এর জন্যও সত্য হয়, তবে উক্তিটি সকল $n\in\mathbb{N}$

If N is set of natural numbers and set is such a set that, if (i) $1 \in S$ and (ii) $m \in S$ is true then $m + 1 \in S$, then $S = \mathbb{N}$ This is a fundamental postulate of N. This relation is called principal of mathematical induction.

For $n \in \mathbb{N}$, If a statement is true for

- (i) n = 1
- (ii) $m = 1 \in \mathbb{N}$ after assuming that the statement is true $n = m \in \mathbb{N}$ Then the statement is true for all $n \in \mathbb{N}$

Principle of Mathematical Induction

Principle of Mathematical Induction:

Binomial Theorem:

$$(a + x)^{n} = a^{n} + {}^{n}C_{1} a^{n-1} x + {}^{n}C_{2} a^{n-2} x^{2} + {}^{n}C_{3} a^{n-3} x^{3} + \dots + {}^{n}C_{r} a^{n-r} x^{r} + \dots + x^{n}$$

Isaac Newton discovered this theorem about 1665 and later stated, in 1676, with proof, the general form of the theorem (for any real number n), and a proof by john Colson was published in 1736

Sir Isaac Newton

John Colson

Example:

Binomial Theorem:

Proof 1:

proof by induction:

Binomial Theorem:

Proof 1:

Binomial Theorem:

Proof 2:

Suppose, we want to determine $(a + x)^2$. Now, $(a + x)^2$ is equivalen to (a + x)(a + x). This multiplication can be done in follow way:

Probable term from first (a+x)	Probable term from first (a+x)	Multiplication	Number of ways to select	
а	а	a ²	1	
а	x	ах	1 -	}- 2ax
x	а	ax	1 _	
x	х	x ²	1	
		$a^2 + 2ax + x^2$		

Binomial Theorem:

Proof 2:

After expanding $(a + x)^3$ if we want a^3 , we will need three a's. From three (a + x) we can select thrice a's in 3C_3 or 1 way.

After expanding $(a + x)^3$ if we want a^2x , we will need two a's. From three (a + x) we can select two a's in 3C_2 or 3 ways.

After expanding $(a + x)^3$ if we want ax^2 , we will need one a. From three (a + x) we can select one a in 3C_1 or 3 ways.

After expanding $(a + x)^3$ if we want x^3 , we will need 0 a. From three (a + x) we can select 0 a in 3C_0 or 1 ways.

Binomial Theorem:

Proof 2:

Therefore,

$$(a+x)^3 = a^3 + {}^3C_2a^2x + {}^3C_1a x^2 + x^3,$$

Or, $(a+x)^3 = a^3 + {}^3C_1a^2x + {}^3C_2a x^2 + x^3$ (As ${}^3C_1 = {}^3C_2$)
 $(a+x)^3 = a^3 + 3a^2x + 3ax^2 + x^3$

Similarly,

$$(a+x)^n = an + {}^nC_1a^{n-1}x + {}^nC_2a^{n-2}x^2 + \dots + x^n$$

Poll Question 02

□ How many terms there will be in expansion of $(a + 2x)^{21}$?

(i) 20

(ii) 21

(iii) 22

(iv) 23

Pascal's Triangle:

Pascal's Triangle:

Pascal's Triangle:

Use:

Pascal's Triangle:

(r+1) th term

$$(a+x)^n = a^n + {}^nC_1 \, a^{n-1} \, x + {}^nC_2 \, a^{n-2} \, x^2 + {}^nC_3 \, a^{n-3} \, x^3 + \dots \, \dots$$
 Here,
$$1^{st} \, term = a^n \\ 2^{nd} \, term = {}^nC_1 \, a^{n-1} \, x \\ 3^{rd} \, term = {}^nC_2 \, a^{n-2} \, x^2 \\ 4^{th} \, term = {}^nC_3 \, a^{n-3} x^3 \\ \vdots \\ \vdots$$

(r+1)-th term = ${}^{n}C_{r}$ $a^{n-r}x^{r}$

(r+1)-th term

$$T_{r+1} = {}^{n}C_{r} a^{n-r} x^{r}$$

Equidistant terms:

$$(a + x)^{n} = a^{n} + {}^{n}C_{1} a^{n-1} x + {}^{n}C_{2} a^{n-2} x^{2} + {}^{n}C_{3} a^{n-3} x^{3} + \dots + {}^{n}C_{r} a^{n-r} x^{r} + \dots + x^{n}$$

$$If a = 1$$

$$(1 + x)^{n} = 1 + {}^{n}C_{1} x + {}^{n}C_{2} x^{2} + {}^{n}C_{3} x^{3} + \dots + {}^{n}C_{r} x^{r} + \dots + {}^{n}C_{r-2} x^{n-2} + {}^{n}C_{r-1} x^{n-1} + x^{n}$$

By complementary combination,

$${}^{n}C_{1} = {}^{n}C_{n-1}$$

$${}^{n}C_{2} = {}^{n}C_{n-2}$$

$$\cdot$$

$$\cdot$$

$${}^{n}C_{r} = {}^{n}C_{n-r}$$

Therefore, The binomial coefficients which are equidistant from the beginning and from the ending are equal

Middle term:

$$(a + x)^{2} = a^{2} + 2ab + b^{2}$$

$$(a + x)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a + x)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

Middle term:

$$(a + x)^{2} = a^{2} + 2ab + b^{2}$$

$$(a + x)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a + x)^{4} = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

$$2 = a^{4} + 4a^{3}b + 6a^{2}b^{2} + 4ab^{3} + b^{4}$$

Middle term:

If n is even-

Middle term:

If n is even:
$$\frac{n}{2} + 1$$
 th term

If n is odd:
$$\frac{n+1}{2}$$
 and $\frac{n+1}{2} + 1$ th term

Ratio of consecutive terms:

$$\frac{T_{r+1}}{T_r} = \frac{{}^{n}C_{r} an^{-r} xr}{{}^{n}C_{r-1}a^{n-r+1}x^{r-1}}$$

$$=\frac{n-r+1}{r}\,\frac{x}{a}$$

Ratio of consecutive terms:

$$\frac{T_{r+1}}{T_r} = \frac{{}^{n}C_{r} an^{-r} xr}{{}^{n}C_{r-1}a^{n-r+1}x^{r-1}}$$

$$=\frac{n-r+1}{r}\,\frac{x}{a}$$

1. Expand: $(x+3y)^4$

2. Determine 7-th term from expansion of $(1 - \frac{1}{x})^{10}$

3. Find the term independent of x in $(2x^3 - \frac{1}{x})^{12}$

4. Find the term independent of x in $(x^2 - 2 + \frac{1}{x^2})^{12}$

5. Find the value of a, if coefficient of x^3 in expansion of $(a + 2x)^5$ is 320.

6. If coefficient of x^5 and x^{15} in expansion of $(2x^2 + \frac{k}{x^3})^{10}$ is equal, find the value of k.

7. Determine Middle term:

$$(i) \left(\frac{x}{y} + \frac{y}{x}\right)^{21}$$

8. Determine Middle term:

(ii)
$$\left(x^2 - 2 + \frac{1}{x^2}\right)^n$$

9. In expansion of $(a + 3x)^n$, if first three consecutive terms are b, $\frac{21}{2}bx$ and $\frac{189}{4}bx^2$, determine value of a, b and n.

10. If *n* is a natural number, find (n + 1) th term from end in expansion of $\left(x^p + \frac{1}{x^p}\right)^n$

11. If in expansion of $(1 + x)^n$ sum of odd terms and even terms are consecutively S_1 and S_2 , show that $(1 - x^2) = S_1^2 - S_2^2$; Where n is a natural number.

লেগে থাকো সৎভাবে, স্বপ্ন জয় তোমারই হবে

র্ডদ্রাম-উন্মেষ শিক্ষা পরিবার

Thank You