بِسْمِ اللهِ الرَّحْمٰنِ الرَّحِيْمِ বিস্মিল্লাহির রাহ্মানির রাহীম

Class 9: Higher Math (Chapter-9.1)

Trigonometric Ratio

Lecture HM-26

Rational & Irrational Exponent

- Structure: Base & Exponent In any math of power, there's a base, and there's an exponent, which determines how many times the base was multiplied χ^2 χ^{-2} χ^{-2}
- Freedom of exponent

The number representating exponent can be any free real number, any rational or irrational, positive or negative, anything.

Power

→Exponent

1.5673---

13 35 n - N 165 56 n - N

Mathematical induction rule

• Rule:

If any mathematical statement is true for a unit value, and after assumingit true for a common value, if it is again true for consecutive value, it can be admitted true for every value.

 $(Atb) = a + 2ab + b^2 \times$

Method of mathematical induction

Step

• Assuming the value of preferable variable 1 and proving the statement.

- Assuming that for the value of the variable being k, the statementis true.
- Proving the statement for value of the variable being k+1.

nove 1~ USKYI

Example (Method of Induction)

• Formula-2:

Stel 3: fort, n=K+1

L.H.S = $(a^m)^{K+1}$ Sti $a^n a^n$ $= (a^m)^{K+1} (a^m)^{K+1}$ Step $= (a^m)^{K+1} (a^m)^{K+1} (a^m)^{K+1} (a^m)^{K+1}$ Step $= (a^m)^{K+1} (a$

এথানে চলক (variable) নিই n কে,

Step-1: So if, n=1, then,

 $a^{m} \cdot a^{1}$ $= a^{m} \cdot a$ $= a^{m+1} [formula 1]$

অর্থাৎ n=1 এর জন্য এটা সত্য। Step-2: এবার ধরে নিই, n=k এর জন্যও এটা সত্য, অর্থাৎ, $a^m.a^k = a^{m+k}$

Step-3: এথন ধরি, n=k+1, তাহলে,

 $a^{m} a^{k+1}$ $= a^{m} (a^{k} a) [formula 1]$ $= (a^{m} a^{k}) a$ $= a^{m+k} a [from step 2]$ $= a^{m+k+1} [formula 1]$

অর্থাৎ এটা n=k+1 এর জন্যও সত্য

সুতরাং, এটা n এর সব মালের জন্য সত্য

Step 1: for n = 1, L.H.S = $(a^m)^{\prime}$ R.H.S = a^{\prime} 1] = a^m = a^m \therefore L.H.S = R.H.S \therefore for n = 1, \bigcirc is true.

Step 2: let, for
$$n=k$$
, D in true
 $(a^m)^k = a^{mk} - 0$

Example (Method of Induction)

Example 4	lf m,n∈N, then,	
	$\frac{a^m}{a^n} = a^{m-n}$, when $a \neq 0$	
	এথানে তিনটা কেস আছে	
	Case:1- যথন m>n, তাহলে	
	$\frac{a^m}{a^n} = a^{m-n} \ [formula \ 3]$	
	u ^ক Case:2- যথন m <n, th="" তাহলে<=""><th></th></n,>	
	$\frac{a^m}{a^n} = \frac{1}{a^{n-m}} [formula \ 3]$	
	$= a^{-(n-m)} \left[a^{-n} = \frac{1}{a^n} \right]$	
	$=a^{m-n}$	
	Case:3- যথন m=n, তাহলে,	
	$\frac{a^m}{a^n} = \frac{a^n}{a^n} = 1 = a^0 = a^{m-m} = a^{m-n}$	
	অর্থাৎ, m,n এর যেকোনো মানের জন্য $rac{a^m}{a^n}=a^{m-n}$	र्दछाय 🖞 💐 उिलाय
		শিক্ষা পৰিবায়

The discussion on roots

The structure of root considered as this thing,

If $x^n = a$

Then x will be called the nth root (n-তম মূল) of a [only

if $n \in N$, and n > 1]

```
x can be written as \sqrt{a}.
```

Some points to be noted:

- If a>0 and n∈N, n>1, then there are two cases. If n is odd(বিজোড়), then the nth root will be simply n√a. But if n is even(জোড়), then there will be two nth roots for a. One is n√a, and another is -n√a
- If a<0 and n∈N, n>1, then there are two cases again. If n is odd, then the nth root will be -n√a. But if n is even, there is no nth root for a.

Relation between root and exponent:

$$n\sqrt{a} = a^{\frac{1}{n}}$$

Some tips for math

Example 11

Example 14 If $a^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}}$ and abc = 1, then show that x + y + z = 0. abc = 1 $\alpha^{\frac{1}{x}} = b^{\frac{1}{y}} = c^{\frac{1}{z}} = K$ $\begin{array}{c} a^{1}x = K \\ a^{1}x = K \\ \vdots \\ a^{1}x = K \\ \vdots \\ a^{1}x = K^{n} \\ = \left(a^{n}\right)^{-1} \\$ =) K^{X} , K^{Y} , $K^{Z} = 1$ =) $K^{X+J+2} = 1 = K^{0}$ 2+7+2=0

Solve for n Example 17 x - 5n + 6 20 $4^{x} - 3.2^{x+2} + 2^{5} = 0$ (সমাধান করো) $(2^2)^n - 3.2^n.2^2 + 32 = 0$ y²-12y + 32 = 0 $= (2^{n})^{2} - 3.2^{n}.4 + 32 = 0$ => j - 8j - 4j + 32 = 0 =) 7(3-8) -4(3-8) = 0 =) $(2^{n})^{2} - 12.2^{n} + 32.2^{n}$ =) (J-8) (J-4) =0 2-4=0 let, 2 = } 2-8=0 7 = 4 y = 8 $x = 2^{3}$ $2^{1} = 2^{2}$ x=2. :.X=3

Poll Question 01

Poll Question 02

Mathematical induction is used-

(a) To invent new formula

(b) To prove a formula

(c) None

Poll Question 03

 $\sqrt{a} \times \sqrt[3]{a} \times \sqrt[4]{a} \times \sqrt[5]{a} \times \dots = ?$ $(\frac{1}{2}, \frac{1}{2}, \frac{1}{2},$ (b) $\left(a^{\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\cdots}\right)$ (a) $(\sqrt{a})^{1 \times 2 \times 3 \times ...}$ (c) *a* (d) 1

Exercise 01

If
$$a^{b} = b^{a}$$
, then show that, $\left(\frac{a}{b}\right)^{\frac{a}{b}} = a^{\frac{a}{b}-1}$ and from this prove that, if $a = 2b$, then $b = 2$

Exercise 02

If $a = 2 + 2^{\frac{2}{3}} + 2^{\frac{2}{3}}$, that show that, $a^3 - 6a^2 + 6a - 2 = 0$

Exercise 03

If $a^{m} a^{n} = (a^{m})^{n}$, then prove that, m(n-2) + n(m-2) = 0

লেগে থাকো সৎভাবে, স্বপ্ন জয় তোমারই হবে

D™¢vm-D‡b¥l শিক্ষা পরিবার Thank You