ENGINEERING ADMISSION PROGRAM-2020

HIGHER MATH

Lecture	:	M-02
---------	---	------

Chapter 02 : Vector

Chapter 08 : Function and Graph of Function

Chapter-08 Function and Graph of Function

Identify Functions from Mapping

Poll Question 01

Which one is Surjective Function?

Identify Functions and One-One Function from Graph

If y –axis or its' parallel line intersects the graph of a relation at one point only, then the relation is called as Function.

If x –axis or its' parallel line intersects the graph of a function at one point only, then the function is called as One-One Function.

Poll Question 02

Which is One-One Function?

Determination of Domain

For, y = f(x)

For which set of real values of x, the values of y or f(x) will be real, is called as Domain of f(x).

Determination of Domain of Different Types of Functions

 $f: A^{\mathbb{N}} \longrightarrow B; f(x) = \text{Any relation}$

Example: $f: (\widehat{R}_+) \rightarrow R; f(x) = 2x + 1$

LR+

f(x) = 2x + 1

Determination of Domain of Different Types of Functions

R: R-23/52

Determination of Domain of Different Types of Functions

~ - Ya

Poll Question 03

_C.N

Find the Domain of $f(x) = \frac{1}{\sqrt{9-25x^2}}$

 $\left(-\sqrt{\frac{b}{a}},\sqrt{\frac{b}{a}}\right)$

 $(-\frac{3}{5},\frac{3}{5})$ (b) $\left[-\frac{3}{5}, \frac{3}{5}\right]$ (C) $\left(-\frac{5}{3},\frac{5}{3}\right)$ (d) $\left[-\frac{5}{3}, \frac{5}{3}\right]$

Determination of Domain of Different Types of Functions

Chapter 08 : Function and Graph of Function

উট্টা বিদ্যাম একাডেমিক এন্ড এডমিপন কেয়া

Domain of logarithmic functions:

1. x>0
 2. a>0 & a ≠ 1

We also need to know, if, $\log_a x = p$ then, $x = a^p$

Domain of logarithmic functions: ra Lo -a LN LA $f(x) = \log(9 - x^2)$ $9 - n^{7} 7^{8} - (n^{2} - 9) 7^{0} + (n^{2} - 9) 2^{0} + (n^{2} - 9) 2^{0} + (n^{2} - 9) 2^{0} + (n^{2} - 3) 2^{0} + (n^{2}$ x-5 20 -56x65 -6 CN26

Domain of logarithmic functions:

Determination of Range

For, y = f(x)

For which set of real values of yor f(x), the values of x will be real and belong to dom, f, is called as Range of f(x).

Poll Question 05

Find the Domain and Range of $f(x) = \frac{x}{|x|}$

(a)
$$d_f = \mathbb{R}, R_f = \mathbb{R}$$

(b) $d_f = \mathbb{R} \setminus \{0\}, R_f = \{-1, +1\}$
(c) $d_f = \mathbb{R}_+, R_f = [-1, +1]$
(d) $d_f = \mathbb{R}_-, R_f = \{0\}$

0-X

Higher Math 1st Paper Chapter 08 : Function and Graph of Function

5 5-12

Function	Domain	Range
sin ⁻¹ x	[-1,1]	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]$
$\cos^{-1} x$	[-1,1]	[0, π]
tan ⁻¹ x	R	$\left(-\frac{\pi}{2},\frac{\pi}{2}\right)$
cot ⁻¹ x	R	(0, π)
cosec ⁻¹ x	$\mathbb{R}-(-1,1)$	$\left[-\frac{\pi}{2},\frac{\pi}{2}\right]-\{0\}$
sec ⁻¹ x	$\mathbb{R}-(-1,1)$	$[0,\pi] - \left\{\frac{\pi}{2}\right\}$

ত্র্যু ক্রিয়ার বিশ কেয় একাডেমিক এন্ড এডমিশন কেয়

f(x) = cosx $f(x) = secx = \frac{1}{cosx}$

f(x) = tanx

Chapter 08 : Function and Graph of Function

 $f(x) = \cot x$

Find the domain & range of
$$f(x) = 3sinx + 4cosx + 2020$$
.

$$f(n) = 5\left(\frac{3}{\sqrt{3^2+4^2}} + \frac{4}{\sqrt{3^2+9^2}}\right) + 2020 + \frac{4}{\sqrt{3^2+5^2}} + \frac{4}{\sqrt{3^2+5^2}}\right)$$

$$= 5\left(\frac{3}{\sqrt{3^2+4^2}} + \frac{4}{\sqrt{3^2+9^2}}\right) + 2020 + \frac{4}{\sqrt{3^2+5^2}} + \frac{4}{\sqrt{3^2+5^2}}\right)$$

$$= 5\left(\cos \theta + \sin \theta + \cos \theta\right) + 2020 + \frac{4}{\sqrt{3^2+5^2}} + \frac{6}{\sqrt{3^2+5^2}}\right)$$

$$= 5\sin(n+\theta) + 2020 + 2020 + \frac{2015}{3}$$

$$= 5\sin(n+\theta) + 2020 + \frac{2015}{3}$$

$$= 5\sin(n+\theta) + 2020 + \frac{2015}{3}$$

$$= 5\sin(n+\theta) + 2020 + \frac{2015}{3}$$

$$= 5\sin(1+\theta) + \frac{10}{3}$$

Inverse Function:

If $f: A \to B$; $f^{-1}: B \to A$ (Only Bijective Function has its' Inverse Function)

Determination of Inverse Function

If $f: R \setminus \{1/2\} \to \widehat{R}; f(x) = \frac{x+3}{2x-1}$, then $f^{-1}(x) = ?$ Kange? one-one l'injective sunjective (on-to sunjective $y = \frac{x+s}{2x-}$ $x_1 = n_2 - g_1(n_1) = f(n_2)$ $x_1 \pm x_2 - s f(x_1) \pm f(x_2)$ 217-7=1+3 ~ x,, x2 E E K 2 1 22)-X= 2+3) = ソ+3 $f(n_i) = f(n_i)$ Second to $\lambda \chi = \frac{7+3}{1}$ λ_{1} Higher Math 1st Paper Chapter 08 : Function and Graph of Function

Determination of Inverse Function

If $f: \mathbb{R} \setminus \{3\} \to \mathbb{R} \setminus \{1\}; f(x) = \frac{x-2}{x-3}$, then $f^{-1}(x) = ?$

¥

1 Aur

(m) = 2N + 5

Poll Question 06

If $f: R \to R$; f(x) = 2x + 3 then what will be the value of $f^{-1}(x)$?

Composite Function:

Composite Function:

If $f(x) = \sqrt{x - 1}$, $(x \ge 1)$, $g(x) = x^2 + 2$, then find $(gof^{-1})(x) = ?$

f(n) - (n-1) $J = \sqrt{n-1}$ ソーニュー ゾモーシス x = y +) $f^{-1}(y) = f^{-1}(y)$ $f^{-1}(h) = \chi^{\vee}(h)$

[BUET'18-19]

Problem related to the function value:

• Constant function: f(r) = 5

f(m) = C

ক্রাডেমিক এন্ড এডমিশন কে

Poll Question 07

Which one is even function?

(a) f(x) = tanx(b) f(x) = cosx + 2(c) f(x) = sinx + 2

(d) None

Graph of Functions:

Draw $f(x) = -e^{(x-2)} + 3$, with the help of $f(x) = e^x$. en -\$ ≪ en x-N & ~/~// l 2-2-2 1en-2 X e^{x-2} (2,1 $-e^{x-2}$ KI X $-e^{x-2}+3$ (0, 1)en γ e^ x -10 -8 -6 -2 6 0 D e' =2.718 et = 73] et = 73] 2 -2 7-2 3 e³, 20.-4 e¹, 5x-su -> e²⁻³ou (0,1) 1.135 ngo gyo لکہ ر Higher Math 1st Paper Chapter 08 : Function and Graph of Function

Chapter-02 : Vector

Determination of magnitude and internal angle

Concept:

(i) For a vector
$$\vec{A} = x\hat{i} + y\hat{j} + z\hat{k}$$
, $|\vec{A}| = \sqrt{x^2 + y^2 + z^2}$
(ii) If the angle between two vectors \vec{A} and \vec{B} is θ ,

then
$$\vec{A} \cdot \vec{B} = AB \cos \theta \Rightarrow \cos \theta = \frac{\vec{A} \cdot \vec{B}}{AB}$$
;

Determination of magnitude and internal angle

If $\vec{P} = 4\hat{i} - 2\hat{j} + 4\hat{k}$ and $\vec{Q} = 4\hat{i} - 2\hat{j} - \hat{k}$ then what's the angle between \vec{P} and \vec{Q} ? [KUET'18-19] $\frac{F \cdot A}{P A} = \frac{F \cdot A}{4 \times 4 \times (-2)} \times (-2) + (4 \times (-1))$ $A' + (-2)' + A' \qquad A' + (-2)' + (-1)'$ = ()

Poll Question 08

Find the angle that the vector $\overline{A} = -\sqrt{3}i + j$ makes with the positive xaxis. [RUET'18-19]

(a) 150°
(b) 210°
(c) Both a & b
(d) None

Related to unit vector

The coordinates of P and Q are respectively (1,1,1) and (3,2,-1). Determine the unit vector parallel to \overrightarrow{PQ} . [BUET'03-04]

Related to perpendicular or parallel vector

Concept:

(i) Condition on two perpendicular vectors, $\vec{A} \cdot \vec{B} = 0$ (ii) Condition on two parallel vectors, $|\vec{A} \times \vec{B}| = 0$

Shortcut for MCQ: $\vec{A} = A_x\hat{i} + A_y\hat{j} + A_z\hat{k}$; $\vec{B} = B_x\hat{i} + B_y\hat{j} + B_z\hat{k}$ if $\vec{A}||\vec{B}$ then $\frac{A_x}{B_x} \neq \frac{A_y}{B_y} \neq \frac{A_z}{B_z}$

Related to perpendicular or parallel vector

Show that, $\vec{A} = 8\hat{i} + \hat{j} - 6\hat{k}$ and $\vec{B} = 4\hat{i} - 2\hat{j} + 5\hat{k}$ are perpendicular on each other. [BUTex'10-11,07-08,03-04]

Poll Question 09

For which value of *m*, $4\hat{i} + 3\hat{j} + 5\hat{k} \otimes 8\hat{i} + 6\hat{j} + \frac{m}{3}\hat{k}$ will be parallel? (a) $\frac{10}{3}$ (b) $\frac{5}{6}$ (c) 30 15 m (d) None 3m = 90m = 30

Related to projection and component

Related to projection and component

If $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k}$ & $\vec{b} = 4\hat{i} + 8\hat{j} - \hat{k}$ then find the component of \vec{b} on \vec{a} erojection of \vec{b} along \vec{a} . [BUET'08-09, 09-10, 10-11,12-13,13-14; KUET' 05-06,09-10; DU'16-17]

Chapter 02 : Vectot

একাডেমিক এন্ড এডমিশন কেয়

Related to area

Concept:

 \vec{A} and \vec{B} are two vectors,

- > If they indicate two side of a triangle then area, $\Delta = \frac{1}{2} |\vec{A} \times \vec{B}|$
- > If they indicate two diagonal of a parallelogram then area, $\Delta = \frac{1}{2} |\vec{A} \times \vec{B}|$
- > If they indicate two side of a parallelogram then area, $\Delta = |\vec{A} \times \vec{B}|$

Related to area

If $\vec{P} = 4\hat{i} - 4\hat{j} + \hat{k} \& \vec{Q} = 2\hat{i} - 2\hat{j} - \hat{k}$ is expressed as two adjacent sides of a parallelogram, then find it's area. [CUET'15-16, DU'17-18]

