VARSITY 'Ka' ADMISSION PROGRAM 2020

LECTURE : C-01

CHAPTER 3 : PERIODIC PROPERTIES OF ELEMENTS

www.udvash.com

La	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu
Lanthanum 138.90547	Cerium 140.116	Praseodymium 140.90766	Neodymium 144.242	Promethium (145)	Samarium 150.36	Europium 151,964	Gadolinium 157.25	Terbium 158.92535	Dysprosium 162.500	Holmium 164.93033	Erbium 167.259	Thulium 168.93422	Ytterbium 173.045	174.9668
Åc	ືTh	°₽a	⁹² U	°³Nр	Pu	°Åm	сm	^{³7} Bk	°⁰Cf	⁹⁹ Es	[™] Fm	™Md	No	Ľ۲
Actinium (227)	Thorium 232.0377	Protactinium 231.03588	Uranium 238.02891	Neptunium (237)	Plutonium (244)	Americium (243)	Curium (247)	Berkelium (247)	Californium (251)	Einsteinium (252)	Fermium (257)	Mendelevium (258)	Nobelium (259)	Lawrencium (266)

Chemistry

Chapter 3 : Periodic Properties of Elements (1st Paper)

All transition elements are d- block, but all d- block elements are not transition elements

ত্রি হিয়াম একাডেমিক এন্ড এন্টমিশন কেয়ার

AProperties of transition elements

Variable oxidation state

Catalytic property

Complex ion formation

Colorful compound formation

✓ Magnetic property

Variable oxidation state

Nomenclature of Complex Compounds

Ligand name & number + Name of central transition element + 0. N. of central transition metal Positive Complex Ion: Ligand name & number + central transition element (O.N.) Anion $U(NH_3)_4^{+2}SO_4^{-2}$: Tetra annin opper (II) support

2. Negative Complex Ion:

CO.CO.

Cation+ Ligand name & number + central transition element (ate) (0, N) +3 -3 K_3 [Fe(CN)₆] Potamium lexa cayang Fernale (III)

Nomenclature of Complex Compounds

Ligand name & number

A prefix indicating the number must be added behind every ligand

org south , WHITEBOARD orbital Catalytic property $\rightarrow empty^{\prime} d$ Adsorption Theory Intermediate compound Formation UnSatinated Catalysis Saturated)) catalysis 2N0, N2+ 8H (7) (°) 2N0, 7 Catalysts $2.2v_20q + 0z \longrightarrow$ E - S.A. TI Chemistry Chapter 3 : Periodic Properties of Elements (1st Paper)

- ✓ Valency
- Physical characteristics (Melting point, density, conductivity etc.)

WHITEBOARD Ionization energy

The ionization energy or ionization potential of an element means the amount of energy needed to turn 1 mole of gaseous atoms to 1 mole of positive ion by removing 1 mole electron from each atom.

_Chapter 3 : Periodic Properties of Elements (1st Paper)

_Chapter 3 : Periodic Properties of Elements (1st Paper)

Electron Affinity

The amount of energy changed to turn 1 mole neutral gaseous atoms to 1 mole negatively charged atoms by accepting 1 mole electrons is called electron affinity.

WHITEBOARD ••• Poll Question 07

$$O^- + e^- = O_{2}^-$$
, the reaction is?

(a) Exothermic(b) Endothermic

Exception in case of Electron Affinity

Electronegativity

In a covalent compound molecule formed by different elements, the tendancy of an atom to attract the bond pair electron towards itself is called electronegativity.

WHITEBOARD Variation of properties in a period from left to right Variation energy Metallic

Variation of properties in a group from top to bottom

লেগে থাকো সৎ ভাবে, স্বপ্ন জয় তোমারই হবে।

www.udvash.com