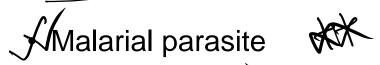

Varsity 'Ka' Admission Program-2020

BIOLOGY

Lecture : B-01

Chapter 4 : Microorganisms (1st Paper)



Important Topics of This Chapter:

- Virus V
- Economical Importance of Virus
- Diseases cased by viruses **
 - Bacteria
 - Economic importance of Bacteria

What is virus?

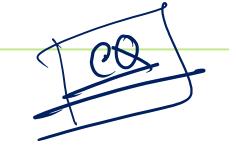
Virus is an acellular ultra microscopic, obligate parasite which is composed of centrally located nucleic acid and covered by protein, capable of causing disease inside the living body but remains inactive outside living cells

History of discovery of virus

- In 1796/Edward Jenner mentioned about the first viral disease Small Pox
- ◆✓DIMITRY IVONOVOSKY proved that the pathogen behind tobacco mosaic disease cant be separated after being filtered by bacteria preventing filter. He is known as the FATHER OF VIRUS DISCOVERY

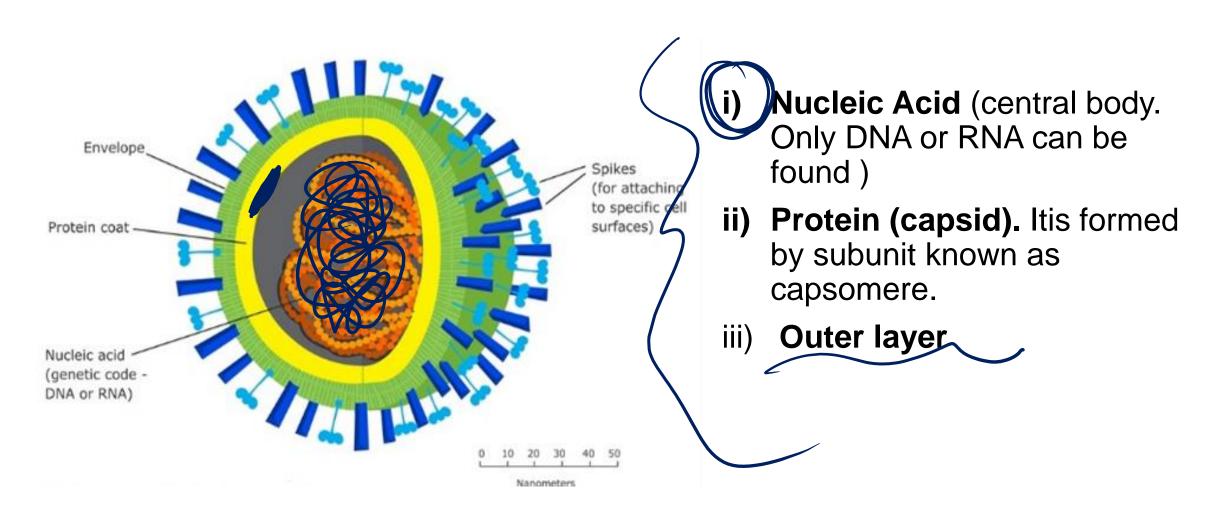
STANLEY separated virus as crystal and for this achievement he was awarded

NOBEL PRIZE in 1946



Non-living/Chemical Characteristics

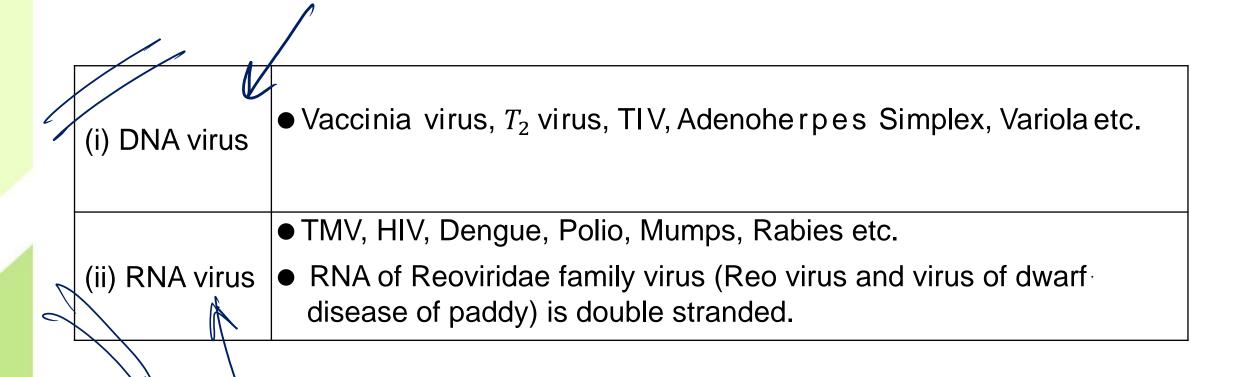
- Virus does not contain cellular properties, like- cell wall, cell membrane and cytoplasm; that is why they are acellular and ultramicroscopic. They do not contain cytoplasm, cell membrane, cell wall, ribosome and mitochondria. They lack metabolic enzyme and property.
- Virus is not able to reproduce without the help of living cell.
- Virus cannot be filtered by bacteria-proof filter.
 - Virus can be crystallized, centrifuged, diffused, suspended in water and precipitated.
- Viruses are inactive like chemical particles outside a living cell. Neuclic acid >> Rapsid
- Xirus does not grow.


Living Characteristics:

- Virus can multiply inside host cell.
 - Newly formed virus contains property of ancestor virus.
- Structurally, virus contains nucleic acid (DNA or RNA).
- Virus is host-specific, obligatory parasite.
- Virus can undergo mutation and is able to create new variety.

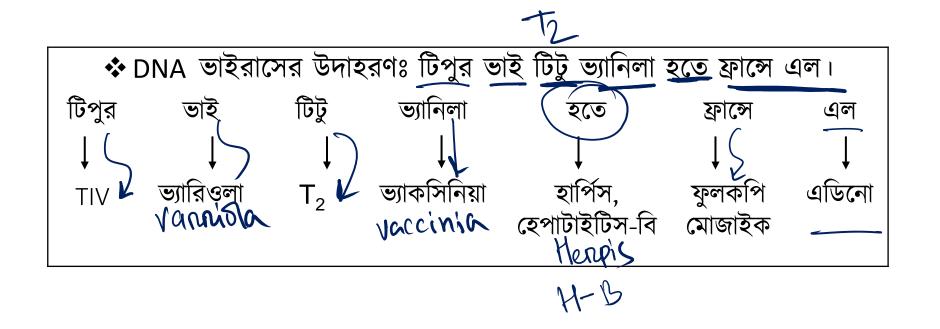
Structure of Virus:

Differently shaped virus

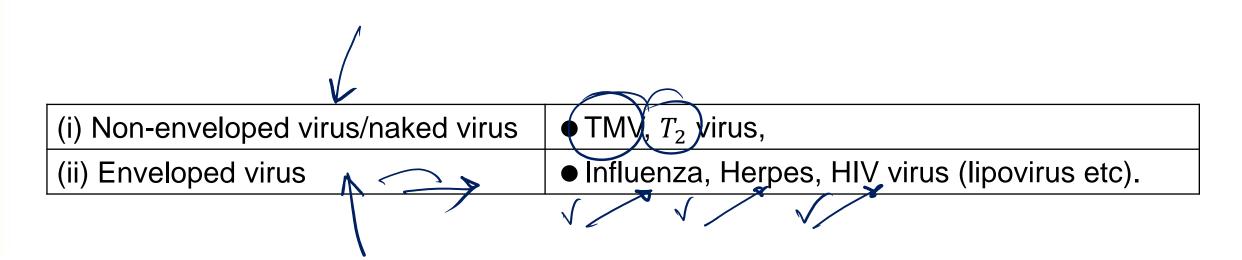

Classification of virus According to shape:

med gupen im.	प्राकृति है।
(i) Rod-shaped	Tobacc <u>o Mosa</u> ic Virus, Alpha Mosaic, TMV, Mumps Virus.
(ii) SPHERICAL	Polia virus, Dengue virus, HIV, TIV.
(iii) Cubic/bread size/polygonal	Herpes virus, Vaccinia virus.
(iv) Tadpole	T_2 T_4 T_6 virus.
(v) Oval	Influenza virus.
(vi) Cylindrical/Filmentous	Ebola Virus, Motor's Streak Virus.

/w.

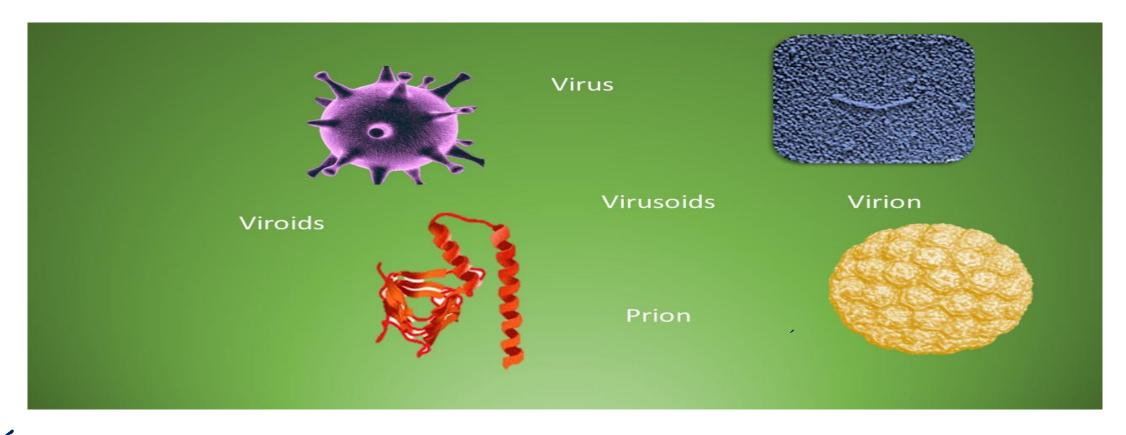


According to type of nucleic acid present



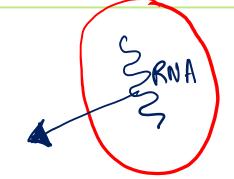
Pnemonic for DNA virus

According to outer coating



RNA VIRUS VS DNA VIRUS

Traits	RNA virus	DNA virus
1. Shape	They are usually rod shaped or stranded.	 They are usually spherical, tadpole shaped and bread shaped.
2. Nucleic acid	Their nucleic acid core is RNA.	 Their nucleic acid core is DNA.
3. Infected organisms	 Most plant viruses and cyanophage are RNA virus. 	 Most animal viruses and bacteriophage are DNA virus.
4. Stand	 RNA of most viruses are single stranded; except paddy dwart disease virus and reo virus RNA are double stranded. 	• DNA of most viruses are double stranded; except- ΦX_{174} and M_{13} coliphage virus DNA are single stranded.
5. Disease	Most RNA viruses cause disease in the plant.	Most DNA viruses cause disease in the animal.
6. Envelop	Generally envelope is not present.	Generally envelope is present outside of capsid.
7. Example	● Tobacco Mosaic Virus (TMV), Potato X Virus, Sugarcane Mosaic, Turnip Mosaic, Alpha-Alpha mosaic, Rabies, Polio, Dengue, Yellow fever, Mumps, Measles, Influenza-B, Encephalitis etc. RNA Virus.	Virus, Vaccinia, Variola, TIV (Mpula Iridescent Virus) Adenoherpes Simplex, virus etc. are DNA Virus.


Virion: The complete, infective form of a virus with a core of nucleic acid surrounded by capsid is called virion.

Nucleocapsid: The non-infectious virus is called nucleocapsid.

Viroid:

Single stranded, circular RNA..
It can cause disease only in plants.

Prion:

It is a nucleic acid less protein shell.

Prion causes Kuru and Creutzfeldt disease of central nervous system of humans and Scrapie disease of sheep and goat.

Association of prion with the widely discussed "Mad Cow" disease of cow has been found.

Sevene aute reginatory syndrome Example: Title GADG No.

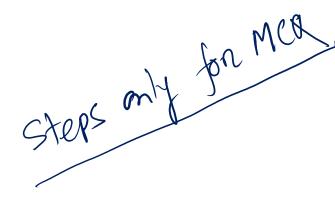
host. Example: HIV, SARS, Nile virus, Ebola etc.

T2 Bacteriophage:

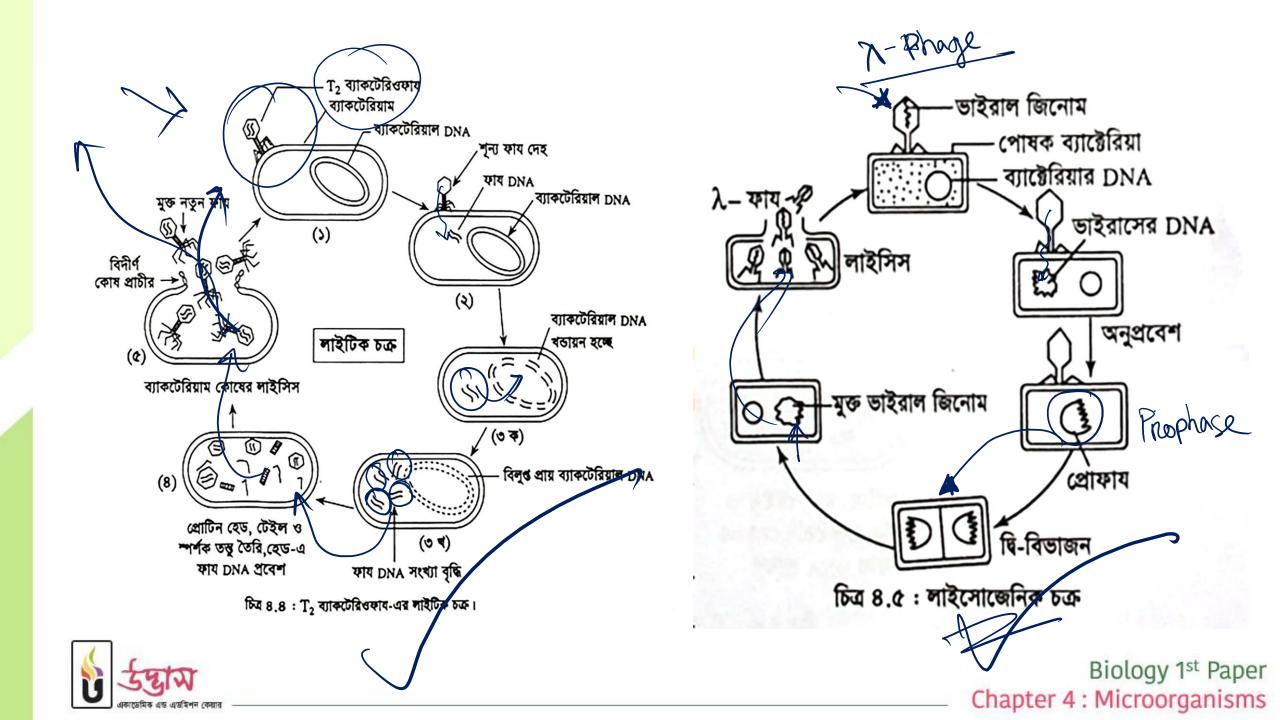
• T2 virus particle can be divided into two parts. Such as-

	• Length is almost 93-100nm and width is
Head	 65nm. DNA is composed of 60,000 base pairs (50%)
	of total weight) and it contains 150 gene.
Tail	• Length is 95-110nm and width is 15-25nm.

Replication cycle of virus:


Lytic cycle V

- Step-1: Attachment/Lnading: T_2 bacteriophage attacks E. coli.
- Step-2: Entry of phage DNA (Penetration)
- Step-3: Replication
- Step-4: Assembly of virus paricles (Assemble)
- Step-5: Release of new virus (Release)


Lysogenic cycle

It is seen in lambda phage that infects *E. coli*.

In this cycle, phage DNA enters *E. coli*. Rather than destroying host DNA, it gets integrated into *E. coli* DNA.

Poll Question: 01

Which one is a DNA Virus?

- (a) Hepatitis-B
- (b) Chikungunya
- (c) Tobacco mosaic
- (d) Dengue

Benefits of Virus:

(i) As vaccine	 Vaccines of pox, polio, rabies, plague, hepatitis/jaundice disease are produced. 	
(ii) As medicine	Production of medicines of Cholera, typhoid, dysentery, plague etc.	
(iii) To enhance beauty	 White spots are seen on red tulip flowers when attacked by virus. It is called a broken tulip. 	
(iv) As an insecticide	 In the United States NPV (Nuclear Polyhydrosis Virus) is applied as insecticide. 	
(v) Rabbit control	Myxovirus is used in Australia.	
(vi) Genetic Engineering	The virus is used as a carrier.	
(vii) Controlling harmful bacteria	Bacteriophage is used in the virus.	

Disadvantages of Virus:

Name of the disease	Virus
AIDS	HIV
Dengue	Flavi virus of dengue virus
Neonatal Microcephaly	Zika Virus
Chikungunya	Chikungunnya Virus
Bird flu	Influenza (H_5N_1) virus

Name of the disease	Virus
SARS	Nipah virus
Rabies	Rabies virus
Smallpox	Variola virus
Chickenpox (Varicella Zoster virus
Cell lysis	Ebola virus

Biology 1st Paper

Chapter 4: Microorganisms

Viral Hepatitis

- ❖ Viral hepatitis is an inflammatory disease of liver...
- * HAV and HEV spread by water. The rest spread by blood.
- ❖ Most hepatitis is caused by HBV.
- ♦ (HCV is called silent killer)
- Liver cirrhosis, liver cancer is caused by hepatitis B and C virus)

		Characteristics of	Hepatitis Virus		
Characteristics	HAV	HBV	HCV E	HDV	HEV
Virus group	Enterovirus	Hepadna virus	Flavi virus	Incomplete virus	Calici virus
Nucleic acid	RNA	DNA	RNA	RNA	RNA
Size	27 nm	42 nm	30-38 nm	35 nm	27 nm
Latent period	14-28 days	45-180 days	14-180 ays	21-49 days	21-56 days

Dengue Fever:

Aedes aegypti, Aedes albopictus (RNA Virus) and also Flavi Virus

i) General dengue fever	 Symptoms include rash, back pain, high fever and pain in eye orbit serology test features the presence of IgM antibody
ii) Hemorrhagic	Bleeding is seen in nose, mouth, jaw and skin of patient.
dengue fever	Platelets reduce drastically in blood and blood cannot clot.
iii) Dengue shock	
syndrome	

Some disease caused by virus:

Chikungunya: It is an RNA virus. Its carrier include *Aedes aegypti, A. albopictus.* This virus was first discovered in Tanjania of Africa.

Symptoms: High fever, joint pain, body rash, headache, weakness etc.

Papaya ringspot or mosaic disease: Papaya ringspot virus or PRSV. This virus has two serotypes. (P type & W type)

Nipah virus caused disease: It is an RNA virus of family Paramyxoviridae. Its carrier is bat. This virus can spread into human body through raw date juice.

Zika virus caused disease: It is an RNA virus. Its carrier include Aedes aegypti) A. albopictus. It can cause microcephali in newborn by infecting pregnant mother.

Poll Question: 03

Which virus cause dengue?

- (a) Flavi
- (b) Ebola
- (c) Adeno
- (d) Poty

Bacteria:

- Single celled, prokaryotic, smallest simple microscopic life form containing cell wall.
- Prokaryotic.
- Primary component of cell wall is peptidoglycan/mucoprotein along with muramic acid and teichoic acid.
 - They are very sensitive to phage virus.
 - Some of them are <u>obligate</u> anaerobes, meaning cannot survive in presence of oxygen. Ex: Clostridium. Some are facultative anaerobes, meaning can survive even in presence of oxygen. Some are obligate aerobes, meaning cannot survive without oxygen. Ex: Azotobacter beijerinckia.
 - They can thrive from <u>-17°</u> to 80° C.
- They can survive up to 50 years in adverse condition by forming endospores.
- Mitosis and meiosis do not occur as they have no chromosome.

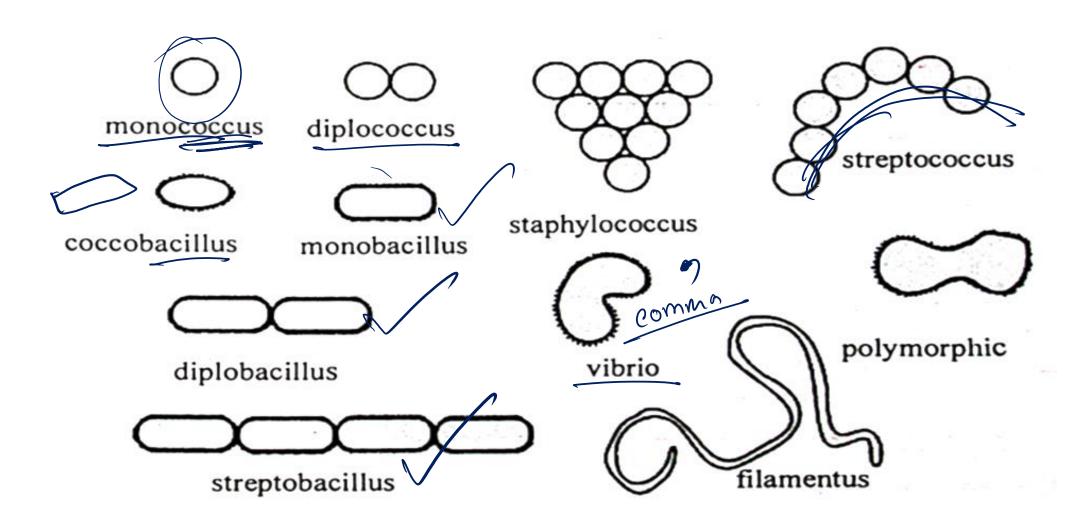

Structure of Bacteria: flagellum pilli 🗸 capsule ribosome vacuole mesosome chromatin protoplast voleutine plasmid cell wall plasma

Fig 4.10 Structure of a typical bacterium

membrane

Classification of Bacteria:

(a) Based on shape:

1. Coccus	Micrococcus: Micrococcus denitrificans, M. flavus Diplococcus: Diplococcus pneumoniae Tetracoccus: Gaffkya tetragena Streptococcus: Streptococcus lactis		
2. Bacillus	Staphylococcus: Staphylococcus aureus Monobacillus: Bacillus albus, E. coli. Diplobacillus: Moraxella lacunata Streptobacillus: Bacillus tuberculosis, Streptobacillus monilliformis Coccobacillus: Salmonella, Mycobacterium Palisade bacillus: Lampropedia sp.		
3. Spirillum	Spirillum minus		
4. Vibrio	Vibrio cholera Commo		
5.Pleomorphic	Rhizobium sp.		
6. Stellate	Stella sp.		
7. Square	Haloquadratum walsbyi		
8. Filamentus	Candidatus. Savagella		
9. Hypha	Streptomyces scabies		

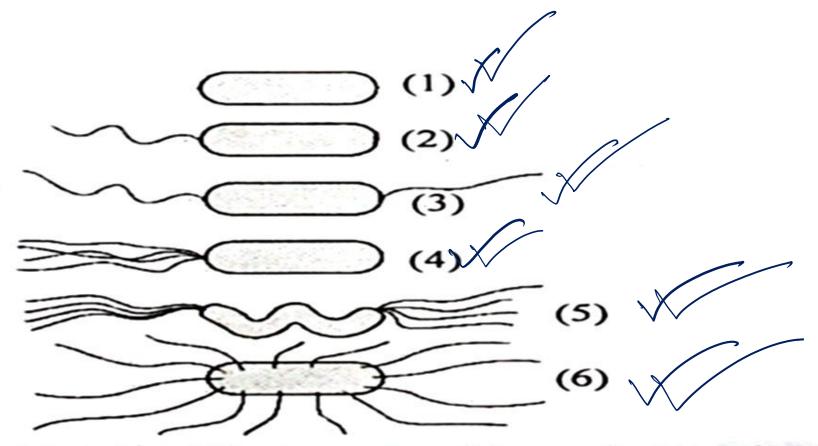


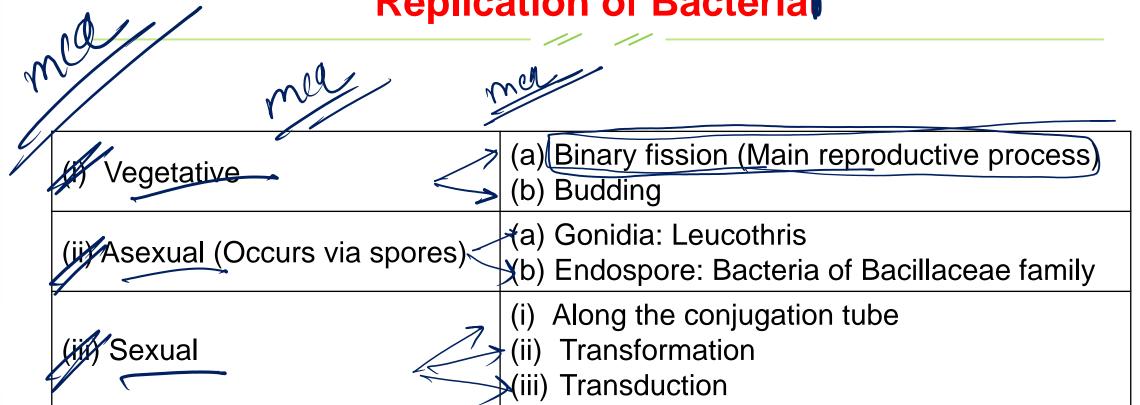
Fig 4.9. Different type of bacteria based on number and distribution of flagella.

(b) Based on presence, position and number of Flagella:

i) Atrichous	Without flagella; Corynebacterium diptheriae		
ii) Monotrichous	Single flagellum at one end; Vibrio cholera		
iii) Lophotrichous	Tufts of flagella at both ends; Spirillum volutans		
iv) Amphitrichous	Single flagellum at both ends; Spirillum serpentans, Spirillum minus		
v) Peritrichous	· Flagella all around; Salmonella typhi, Bacillus typhosus		
vi) Cephalotrichous	· Tuft of flagella at one end; Pseudomonas fluorescens		

(c) Pigment based classification:

i) fram positive	•	Will retain violet color of Crystal Violet upon staining. Example: Bacillus subtilis.
ii) Gram negative	•	After staining, these will lose violet color on washing and retain red color of safranin after wash Example: Salmonella typhi.



(d) Based on Oxygen Requirement:

(i) Aerobic	These do not survive without free oxygen in air; Azotobacter beijerinckia.
(ii) Anaerobic	These survive without free oxygen in air; Clostridium.

Replication of Bacteria

Poll Question: 04

Which of the following bacteria can survive without free oxygen?

- (a) Azotobactor
- (b) Bacillus
- (c) Clostridium
- (d) Staphylococcus

Poll Question: 05

What is bacterial cell wall primarily made of?

- (a) Muramic acid
- (b) Chitin
- (c) Mucoprotein
- (d) Cellulose

Economic Importance of Bacteria

Beneficial effects:

n pledical field00	 To make antibiotic drugs: Subtilin (from Bacillus subtilis), Polymyxin (from Bacillus polymyxa), Streptomycin (from Actinomycetes), Teramycin. To prepare vaccines: Cholera, typhoid, tuberculosis, DPT (diphtheria, whooping cough or pertussis and tetanus) etc. vaccines.
In agricultural sector	 Nitrogen fixation: Azotobacter, Pseudomonus, Clostridium fix N₂ to the soil. Rhizobium fixes nitrogen to the nodules of the plants like green beans. As pesticide: Bacillus thuringiensis. Nitrification: Nitrosomonas, Nitrococcus & Nitrobacter work as nitrifying bacteria.
In industrial sector	 Manufacturing tea, coffee and tobacco: Bacillus megaterium. In dairy farm: Streptococcus lactis, Lactobacillus produce butter, cheese etc from milk. In jute industry: Clostridium. In tannery: Bacillus. Chemical industry: Acetobacter xylinum in production of vinegar Produces lactic acid: Bacillus lacticacidi. Produces acetone: Clostridium acetobutylicum.
In human life	 Cellulose digestion: Domestic animals have bacteria in their stomach for the digestion of cellulose. Vitamin synthesis: E. coli and other bacteria in the human intestine synthesize vitamin B, Vitamin-K, folic acid, biotin etc. Genetic engineering: Agrobacterium, E. coli.

Disadvantages of Bacteria:

Name of Disease	Bacteria
Tuberculosis	Mycobacterium tuberculosis
Typhoid	Salmonella typhi
Dysentry	Bacillus dysenteri
Tetanus	Clostridium tetani
Diphtheria	Corynebacterium diptheriae
Anthrax	Bacillus anthracis
Gonorrhea 🗸 🦯	Neisseria gonorrhoeae
Syphilis	Treponema pallidum
Chlamydia V	Chlamydia trachomatis
Spike blight of wheat	Agrobacterium tritici
Blight of tobacco	Pseudomonas tabacci
Canker of tomato	Corynebacterium michiganese
Canker of lemon	Xanthomonas citri
Scab of potato	Streptomyces scabies

CHOLERA

- causative agent is Vibrio cholera. Its a comma shaped bacteria
- It has a flagellum at one end.
- Robert Koch discovered this
- It attacks the mucose of small intestine and secrets an endotoxin known as

CHOLERAGEN TOXIN A

- This disease causes electrolyte imbalance in the host.
- ORS SALINE is the best treatment procedure

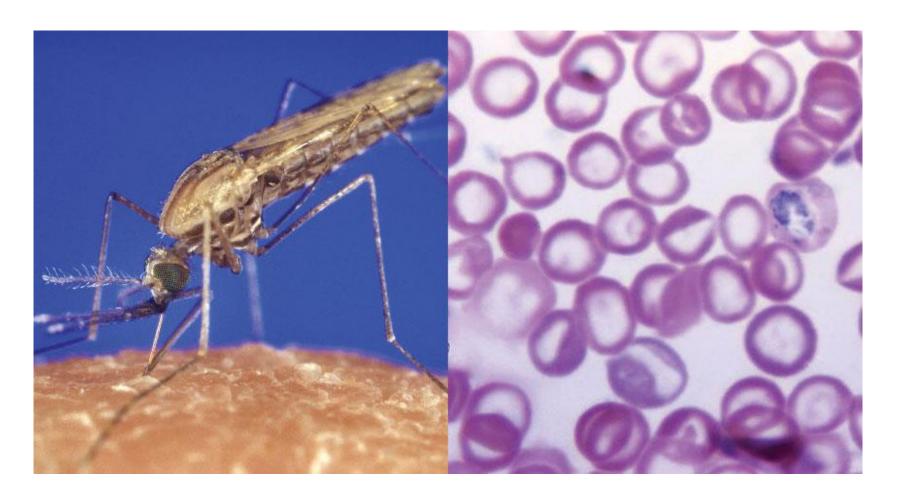
Which of the following vitamin is not synthesized by *E. coli*? (DAT: 18-19)

- (a) Vitamin B_2
- (b) (c) Vitamin K

- (b) Vitamin E
- (d) Vitamin B_{12}

Which bacteria is responsible for sexually transmitted disease? (DAT: 16-17)

(a) Vibrio cholerae


(b) Clostridium tetani

(c) Diplococcus pneumoniae

(d) Chlamydia trachomatis

Malarial Parasite

Different species of Malarial Parasite and names of fever:

X		(2)/		3
	Name of malarial parasite	Name of disease	Nature of fever	Latency period
M	Plasmodium falciparum	Malignant tertian malaria	Fever comes after 36-48 hours	8-15 days
V	Plasmodium malariae	Quartan malaria	Fever comes after 72 hours	18-40 days
	Plasmodium vivax	Benign tertian malaria	Fever comes after 48 hours	12-20 days
	Plasmodium ovale	Mild tertian malaria	Fever comes after 48 hours	11-16 days

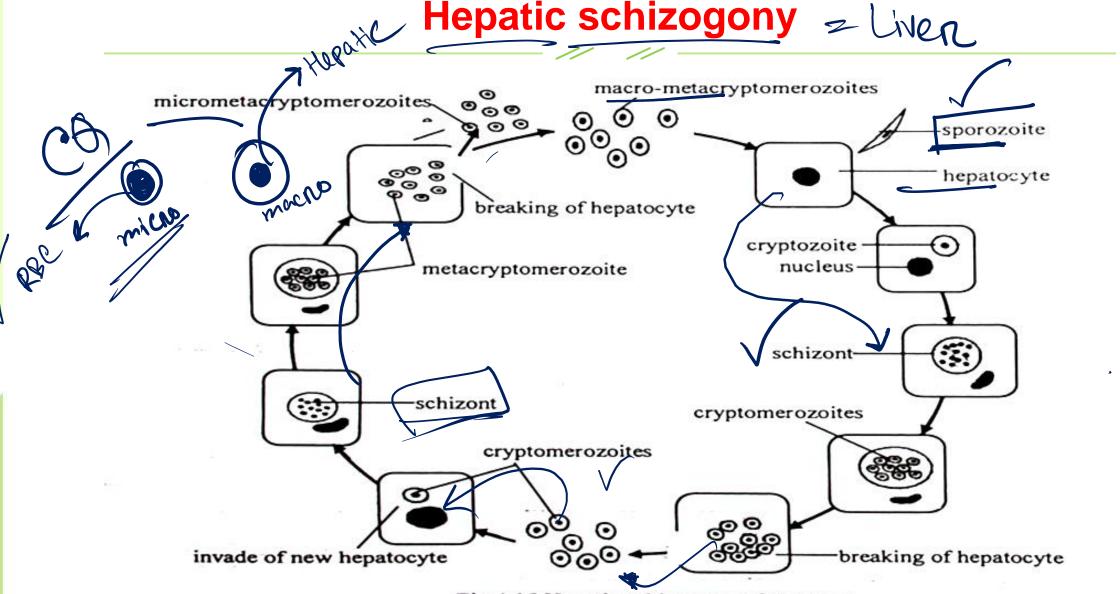
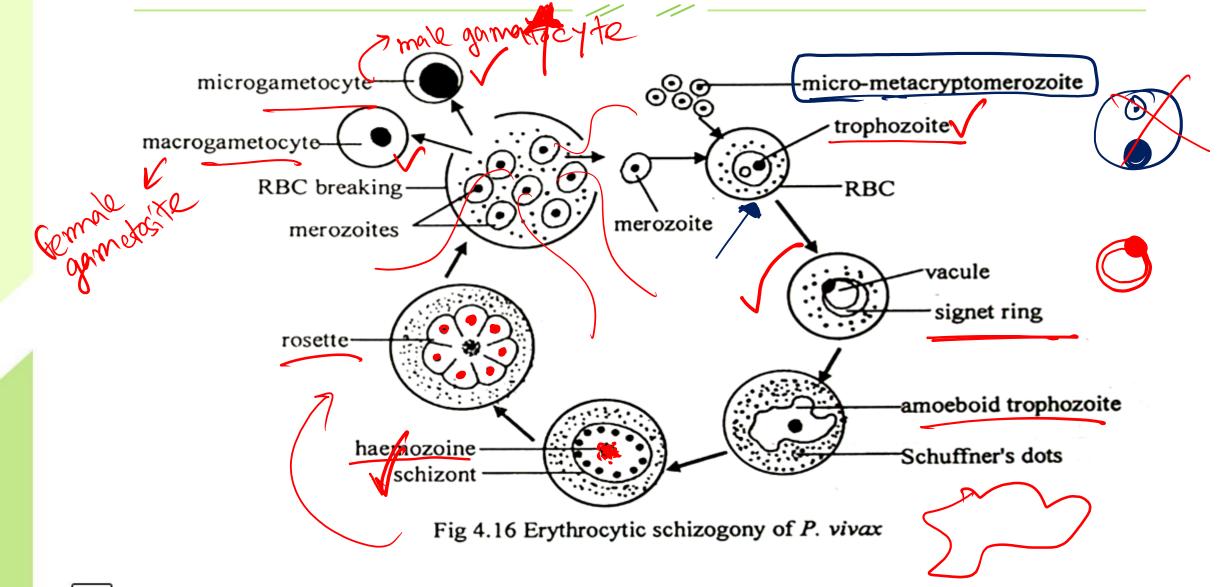



Fig 4.15 Hepatic schizogony of P. vivax

Erythrocytic schizogony

Sexual reproductive cycle of parasite in mosquito 2,600 sporozoite in salivary gland of mosquito oocyst microgametocyte macrogametocyteoocysts infested crop burst oocyste Gametogony Sporogony macrogametesporozoite formation fer. cone microgameteround cell macrogametenuclear division 💋 ookinete ₩ oocyst-Fig 4.17 Sexual cycle of P. vivax in mosquito body

Hepatic or liver schizogony:

Commeny

- ❖ 8,000-20,000 merozoites are formed from each schizont in pre-erithrocytic schizogonoy
- Takes about 7-10 days.

Erythrocytic Schizogony:

- Trophozoite
- 🐴 Signet ring 🏻
- Amoeboid trophozoite: Malaria is diagnosed by the presence of Schuffners dots in RBC.
- \land Schizont (hemozoin)
- Merozoite: Rosette phase can be seen
- Gametocyte: 2 types: a) Micor/male; b) Macro/female

Difference between Hepatic and Erythrocytic Schizogony:

Criteria	Hepatic schizogony	6	Erythocytic schizogony
1. Where occurs	• In human liver		In human erythrocyte.
2. Intermediate steps	Steps include cryptozoite cryptomerozoite and metacryptomerozoite.		Steps include trophozoite, signet ring, schizont and merozoite.
3. Hemozoin V	Is not produced.		• Formed at the end.
4. Host reaction	 Patient does not encountered fever in this phase. 	ter	 Patient encounters fever with chills during this cycle.
5. Schuffner's dots	Cannot be seen.		Can be seen outside schizont.
6. Fever	No fever.		Fever with chills.

Malaria Vaccine:

- First vaccine of malaria in the world is called Mosquirix, which is also known as RTS,S.
- Doses- 4 which is able to produce active antibody agains P. falciparum.

Poll Question: 06

During which schizogzony is malarial fever seen-

- (a) Pre-erythrocytic
- (b) Exo-erythrocytic
- (c) Hepatic
- (d) Erythrocytic

Poll Question: 07

Malignant tertian malarial fever occurs after every-

- (a) 48 56 hours
- (b) 72 100 hours
- (c) 36 48 hours
- (d) 24 48 hours

www.udvash.com