

Carbohydrates

Carbohydrates

Formula (CH₂O)_n C

- Carbohydrates are polyhydroxy aldehydes or polyhydroxy ketone or their derivatives. Their alternative name is hydrates of carbon.
- □ Ratio of C, H, O is 1:2:1
- □ about 50-80% of dry weight of plants.

Characteristics of Carbohydrates

- They are granular (sugar), fibrous (cellulose) and powder like substances.
- They are sweet (sucrose) or tasteless (cellulose).
- Turns into ash if heated.
- Mostly soluble in water

Functions of Carbohydrates

- They act as the main source of energy for organisms and produce energy by being oxidized.
- \checkmark Acts as structural component of supporting tissues of plants.
- ✓ Provides carbon skeleton to structural components of the plant.
- ✓ Used as ubricant in the bone joints.
- Deoxyribose sugar for DNA formation and ribose sugar for RNA formation are must..
- ✓ Many components of our basic demand, such as food, clothes, habitat comes from carbohydrate.
- \checkmark Cellulose gives protection and rigidity to plant.

Classifications of Carbohydrates

a. Based on taste: 2 types

(i) Sugar

- Tastes sweet, granular, water soluble.
- Examples: glucose, fructose, sucrose

(ii) Non-sugar

• Doesn't taste sweet, agranular, water insoluble.

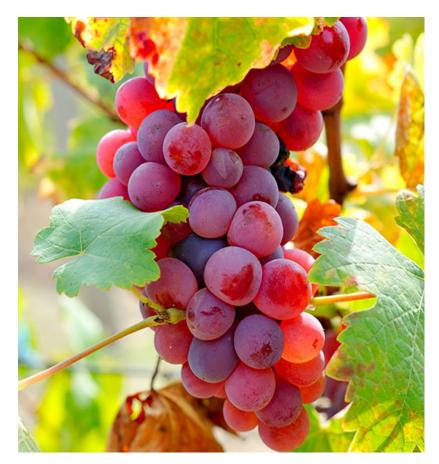
the state

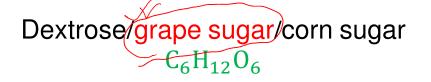
• Examples: starch, cellulose, glycogen, dextrin

Classifications of Carbohydrates

Classifications of Carbohydrates		
	6	
Based on struc	tural molecule, carbohydrates are divided into 4 types.	
(i) Monosaccharide	 Yields one monosaccharide on hydrolysis. Such as-glucose 	
(ii) Disaccharide	 Yields 2 monosaccharides on hydrolysis. Such as maltose, sucrose, cellobiose, lactose, sucrose, cellobiose, lactose, sucrose, cellobiose, lactose, sucrose, sucrose, cellobiose, lactose, sucrose, sucros	
(iii) <mark>Oligo</mark> saccharide	 Yields 3-10 monosaccharides on hydrolysis. Such as- raffinose (trisaccharide) 	
(iv) Polysaccharide	 Yields many monosaccharides on hydrolysis. Such as-starch, glycogen, cellulose. 	

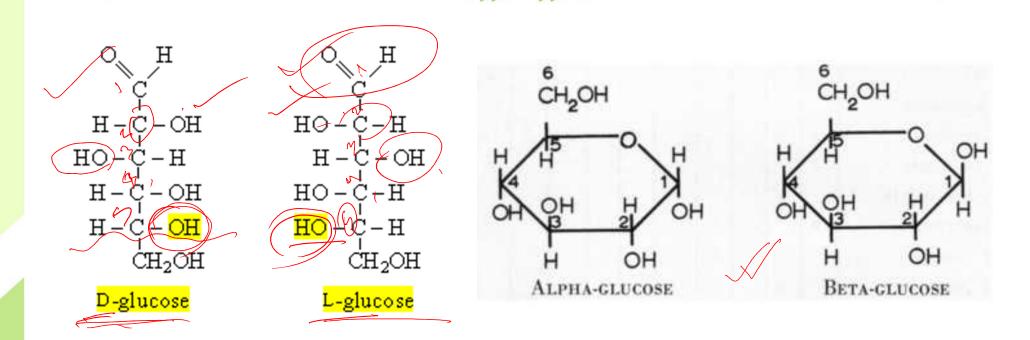
Monosaccharides


Ø


• Carbon number is 3-10.

Туре	Aldose sugar	Ketose sugar
Triose $(C_3H_6O_3)$	Glyceraldehyde	 Dihydroxy acetone
(smallest		
carbohydrate)		
Tetrose $(C_4H_8O_4)$	Erythrose	Erythralose
Pentose $(C_5H_{10}O_5)$	Ribose, Xylose,	Ribulose, Xylulose
	Deoxyribose	
Hexose $(C_6H_{12}O_6)$	• Glucose, Galactose,	Fructose
	Mannose	

Monosaccharide: Glucose


- It is called grape sugar as it is found in 12-30% in ripe grape.
- Primary substance of cellular respiration is glucose.

Use:

- ✓ Well known diet. Provides quick energy to patient.
- ✓ Used in synthessis of vitamin C/
- ✓ Used in preservation of fruits.

Types of Glucose

Monosaccharide: Fructose

Fructose/Fruit Sugar

C₆H₁₂O₆ (isomer of Glucose)

- most ripe sweet fruit and honey contain fructose
- ✓ Used in production of different sweet food

Disaccharides

Maltose, sucrose, cellobiose, lactose etc

formula

Example

- Soluble in water.
- White granular organic substance. Melting point is 188°C.

 $C_{12}H_{22}O_{11}$

- Sucrose is twice as sweet as glucose
- ✓ Sugar usually refers to sucrose. Sucrose is called common dietary sugar.
- ✓ Sugar-cane sap has 15% sucrose. So it is called sugar-cane sugar or beat sugar.
- ✓ Sucrose is the main disaccharide of plants.
- ✓ Carbohydrate produced in leaf is supplied to different organs as sucrose.
- ✓ Main raw material of honey is sucrose

Disaccharides

Cellobiose Produced by two β –Glucose units

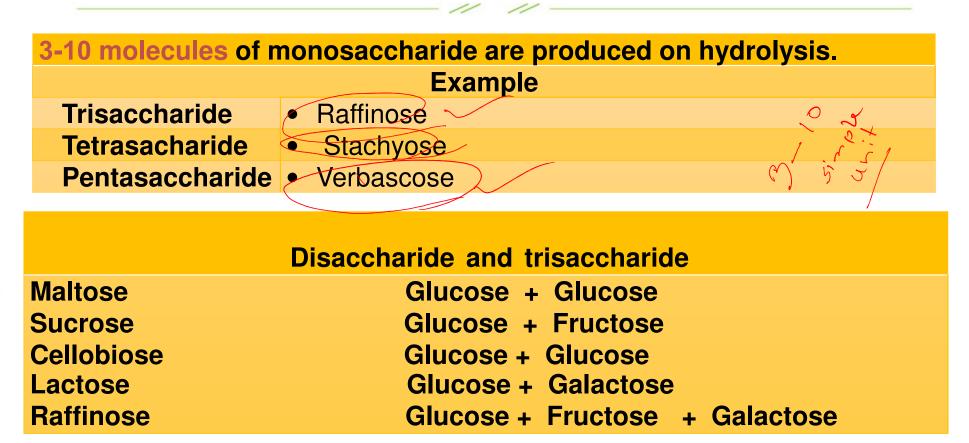
Maltose:

Produced by Two molecules of α – Glucose.

Relative sweetness:

Poll Question-01

What is the number of carbon atoms in glucose molecule?


(a) 5

- (b) 4
- (c) 6

(d) 7

Oligosaccharides

Polysaccharides

$(C_6H_{10}O_5)_n$

Insoluble in water and not sweet.
 Starch, Glycogen, Cellulose, Hemicellulose, Inulin, Dextrinetc

Types of polysaccharides

(a) Structural polysaccharide: Cellulose, Pectic acid etc. (b) Stored polysaccharide: Starch, Glycogen,

Polysaccharide: Starch

 $(C_6H_{10}O_5)_n$

Starch is of two types.

Such as-

a) amylose and

b) amylopectin.

Almost 78/75-80% of molecular weight of starch is amylopectin and 22/20-25% is amylose.

□ Amylose is made of 200-1,000 glucose molecules.

□ 2,000-2,00,000 glucose molecules constitute amylopectin

□ Largest starch particle Potato

□ Smallest starch particle- Rice.

Polysaccharide: Starch

 $(C_6H_{10}O_5)_{0}$

Amylose

- Glucose-1,4- Linkage
- No chain
- 22% of starch
- blue color in iodine solution

Amylopectin

- Glucose-1,4-(1,6-) linkage
- Chained
 - 78% of starch
 - Red color in iodine solution

Polysaccharide: Starch

□ It is odorless, colorless and tasteless, white soft non-granular powder-like organic substance.

They are soluble in water, ether and alcohol in normal temperature.

They form blue color in iodine solution.

✓ Most of the glucose produced in photosynthesis is transformed to starch.

- \checkmark Starch is preserved as stored food in plants.
- Staple food of animal kingdom and humans is starch. Rice, wheat, maize, potato, barley etc. has 70-80% starch.

Polysaccharide: Cellulose

- □ It is insoluble in water or common solution.
- Not sweet
- □ It does not give any color in iodine solution
- No nutrition value
- □ Main structural component of plants I
- Cotton has 94%, linen has 90%, wood has 60%/50% cellulose.
- □ Grasses have 30-40% and soil with organic matter have 40-70% /70% cellulose.
- $\square 90\%$ of plant fibers is cellulose.

Use:-

✓ Plant cell wall is made up of cellulose.

- ✓ It is a main component of paper and garments industry. It is used to manufacture tissue and filter paper and packaging materials.
- ✓ Used as nitrate explosive.
- \checkmark Used in building materials and furniture.
- ✓ Used in biotechnology.

Polysaccharide: Glycogen

Each branch of glycogen has $10-20 \alpha - D$ glucose units.

It is white powder-like organic substance.
It is easily soluble/partial soluble in water.
Converted to glucose by glycogenolysis.
Produces suspension in cold water.
Forms reddish purple color in iodine solution.

Biology 1st Paper Chapter 3 : Cell Chemistry

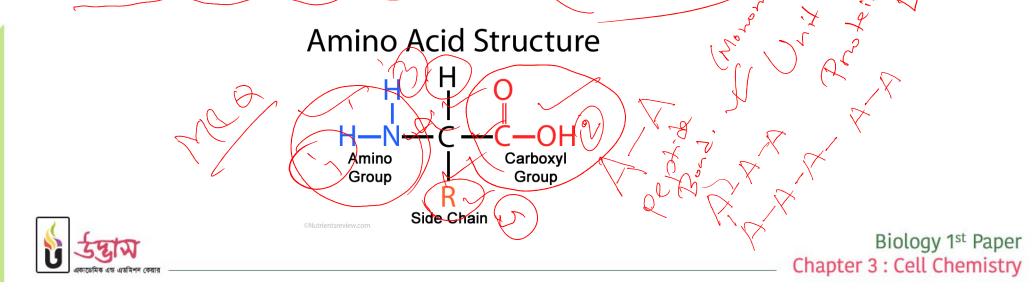
S

Polysaccharide: Glycogen

USE:-

- ✓ Glycogen in muscle gives energy.
- ✓ Glycogen of liver is converted to glucose and flows in blood.
- \checkmark Controls the normal level of sugar in blood.

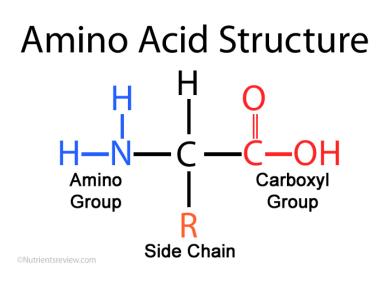
Mamino acids


Н

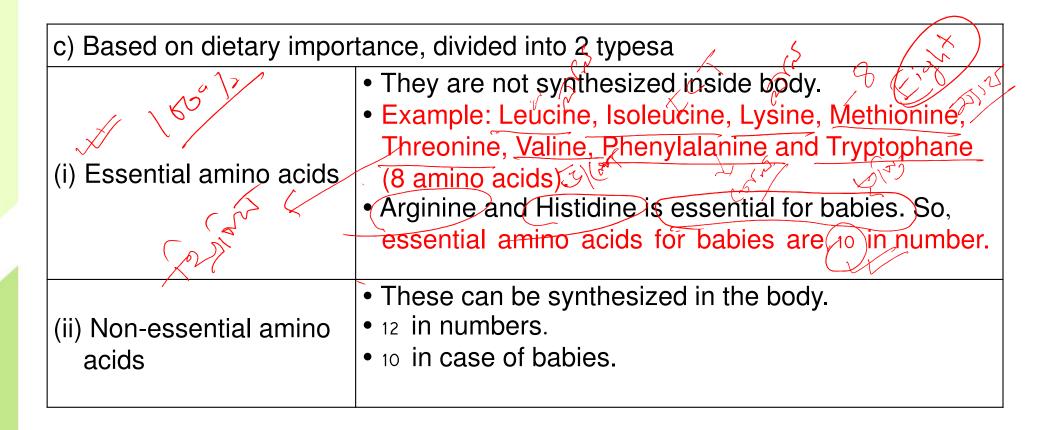
Н

Amino acid

Discoverer: Scientist Emil Fischer


- Total more than 28 amino acids are found in plants and animals among which the number of protein amino acids is 20.
- \Box Almost all amino acids found in human body are α -amino acid
- □ Soluble in water
- One or more amino acids form protein by peptide bonds

Amino acid


Functions:

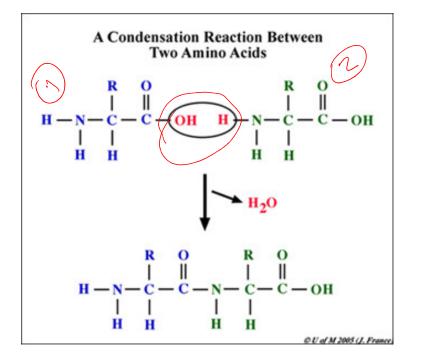
- Protein synthesis.
- Plays role in body structure.
- synthesis of some enzymes,
- Helps in urea synthesis
- Immunity of body is increased.
- Produces melanin pigment present in hair and choracoid layer of eyes I

Classifications of Amino acids

Poll Question-02

How many amino acids are obtained from protein?

(a) 8
(b) 20
(c) 26
(d) 64



Proteins

Proteins

Naming: G. Mulder

- 100 or more amino acids form protein by peptide bond
- Protein is 50% of dry weight of animal body
- Peptide: An amino acid chain bound with peptide bonds
- Polypeptide: Must have amino acids more than 50
- Smallest protein (insulin) can have 75 amino acids whereas the largest protein can have 40,000 amin acid residues

Characteristics of Proteins

- It is composed of carbon, hydrogen and nitrogen. It also contains sulphur, iron and copper.
- Protein is colloid type
- Many physical and chemical process can change nature of protein
- Protein is soluble in water
- Amino acids are found in hydrolysis of protein.
- Protein coagulates in presence of acid. Molecular structure is changed in this process.

Simple Proteins

			- // //	
	Name	Water solubility	Heat Coagulation	Source
	Albumin	+	+	Albumin in egg white, lactalbumin in millk, blood serum
(Głobulin	-	+	Egg yolk, serum globulin (blood plasma), muscle (myosin globulin).
	Histone	+	-	More seen in nucleus and nucleic acid.
	উন্থাম একাচেমিক এড এম্বিশন কেয়ার ————————————————————————————————————			Biology 1 st Paper Chapter 3 : Cell Chemistry

Simple Proteins

	Name	Water Solubility	Heat Coagulation	Source
/	Prolamine	-	-	Zain Ingrad
	Protamine (Smallets protein)	+	-	Sperm of salamin fish
	Glutelin	-	-	wheat, rice
(Scleroprotein		_ ~	Collagen of bone and skin, keratin of nail, skin etc. and tenon of bone
	্রিয়ার একাচেমিক এন্ড এন্তমিশন কেয়ার			Biology 1 st Paper Chapter 3 : Cell Chemistry

Conjugated Proteins

5

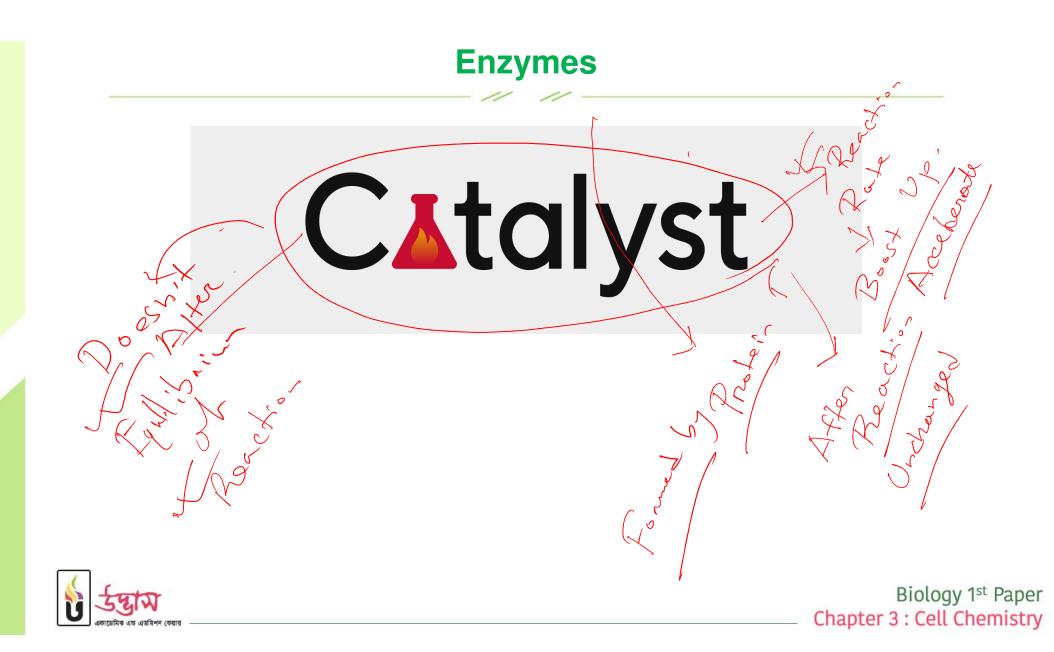
Has a no	on-protein part (prosthetic group).	
Classification	Je S Je	
(i) Nucleoprotein	• Found in chromosome.	
(ii) Glycoprotein/mucoprotein	• Found in <u>cell membrane</u>	
(iii) Lipoprotein	Plasma protein of human blood.	
(iv) Chromoprotein	• Cytochrome, biliprotein, carotenoid, chlorophyll, hemoglobin.	
(v) Metalloprotein	 Has Fe, Mg, Mn, Zn etc; this type of protein is seen in siderophilin and celoplasimin. 	
(vi) Phosphoprotein	 Found in caesinogen of milk and vitelin of egg. 	
(vii) Flavoprotein	Remains attached to FAD.	
	A A S A S	

Functions of Proteins

- Proteins act as stored food in cell
- formation of different organelles and cell membrane.
- Regulates reaction of body as enzymes
- \bullet Creates antibody and keeps body disease free. $\not\!\!\!/$
- Histone activates nuclues and nucleic acid.
- snake venom protein
- Hemoglobin
- Defensive protein
- Interferon is cellular protein.
- Hormones required for animal body are produced. Such as __insulin, STH, LTH.

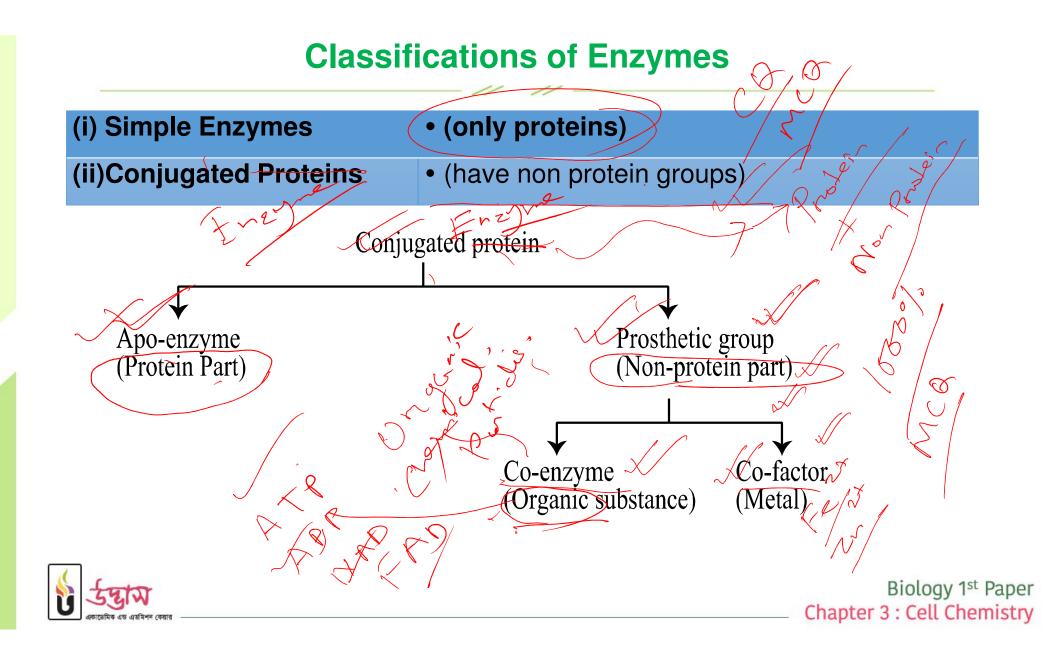
Poll Question-03

Which one is the smallest simple protein?

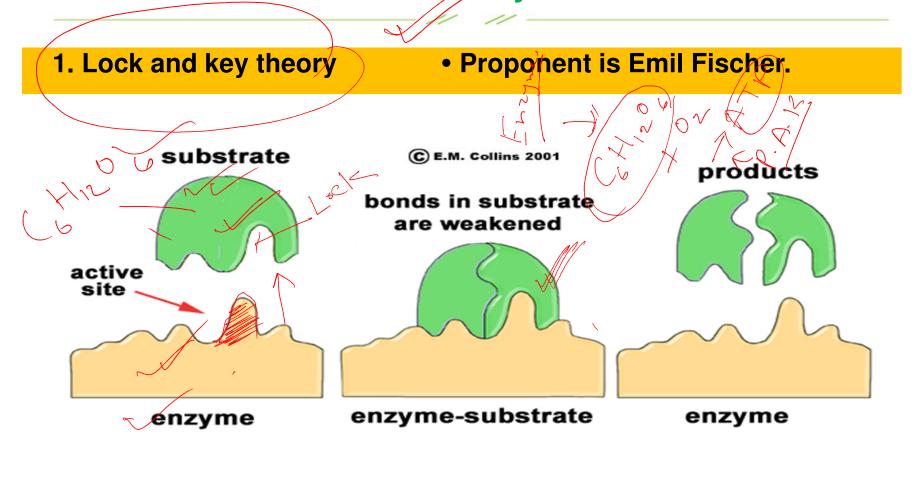

- (a) Protamine(b) Prolamine(c) Globulin
- (d) Albumin

Which one is not a simple protein?

- (a) Albumin
- (b) Glycoprotein
- (c) Protamine
- (d) Globulin



Enzymes


- Enzyme is protein. Optimum pH : 6-9.
- These are heat labile,
- Enzyme can accelerate the rate of reaction being present in a small amount.
- Enzyme only speeds up reaction rate but doesn't change reaction equilibrium.
- Enzymes are specific in their action.
- Enzymes are only produced in living cell
- water is required for their activity.

Mechanism of Enzyme function

Factors effecting enzyme's mechanism

Temperature

Rate of enzyme activity is the most between 35°C and 40°C. This temperature is called "absolute temperature".

🗆 рН

In case of most enzymes, favorable pH is between 6-9

Optimum pH of different enzymes are:

Pepsin $\rightarrow 2.0$ Invertase $\rightarrow 4.5$ Cellobiase $\rightarrow 5.0$ Urease $\rightarrow 7.0$ Trypsin $\rightarrow 8.0$

Factors effecting enzyme's mechanism

Mg⁺⁺, Mn⁺⁺, Co, Ni increases enzyme activity Ag, Zn, Cu can decrease enzyme activity

🗇 Water -

Concentration of substrate, enzyme and product

Activator and inhibitor can alter the reactions

Uses of enzymes

Cellulase

• Cellulase enzyme is used in coffee processing.

• It is also used in pharmaceuticals.

🗇 Zymase

• The enzyme found in yeast that ferments sugar to ethyl alcohol and carbon dioxide is called zymase.

• Zymase enzyme extracted from yeast is used to cure maldigestion.

🗖 Urobilase

• Used to melt clotted blood of brain and artery.

Trypsin

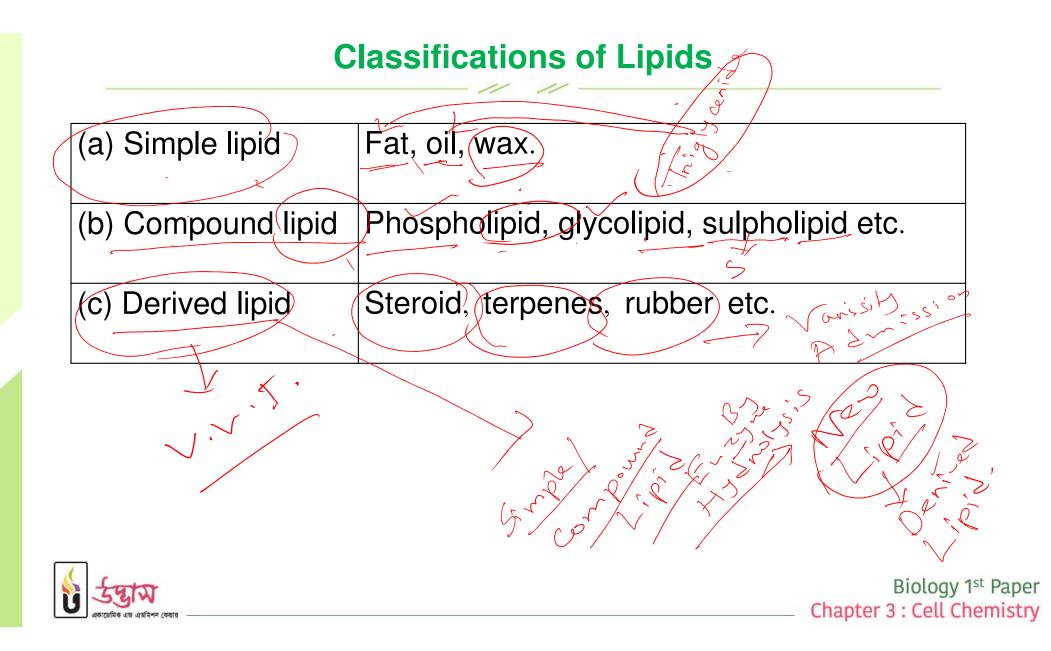
American ophthalmologist Dr. Joseph Spina has done operation of cataract by using trypsin.

D Pectin

• Removes muddy state of fruit juice.

Which one is a component of enzyme?

- (a) Lipid
- (b) Monosaccharide
- (c) Protein
- (d) Glycoprotein


Lipids

Characteristics of Lipids

- Colorless, tasteless and odorless.
- Lipid is converted to fatty acid and glycerol.
- ~ 1 Insoluble in water.
 - Lighter than water, so floats on water.
 - □ Its melting point rises with its molecular weight.
 - □ Lipids that are solid at room temperature are called fat and lipids that are liquid are called oil.
 - □ Lipid has no specific melting point.

Simple Lipids	
(i) Fats and oils	 Two types- fats and oils. Stored as food in fruit and seed. Provides energy and food for growing tree during germination of seed.
(ii) Wax	 24-36 carbon atoms are present in one molecule of wax. Soluble in water, made of unsaturated fatty acid. Chemically inert; because, they have no double bonds in hydrocarbon chain.

Conjugated Lipids

Phospholipid:

- ✓ Structural component of cell membrane and membrane of other organelles.
- ✓ Acts as ion carrier.
- \checkmark Phospolipid helps in blood coagulation.
- \checkmark Plant oil is rich in phospholipid.
- Example: phosphatidic acid, lecithin, cephalin etc.

Conjugated Lipids

Glycolipid:

- Plays role in the formation of photosynthetic organelle.
- ✓ Helps in photosynthesis.
- Glycolipid has been detected in the seed of sunflower and cotton.
- Glycolipid is more in plant chloroplast.

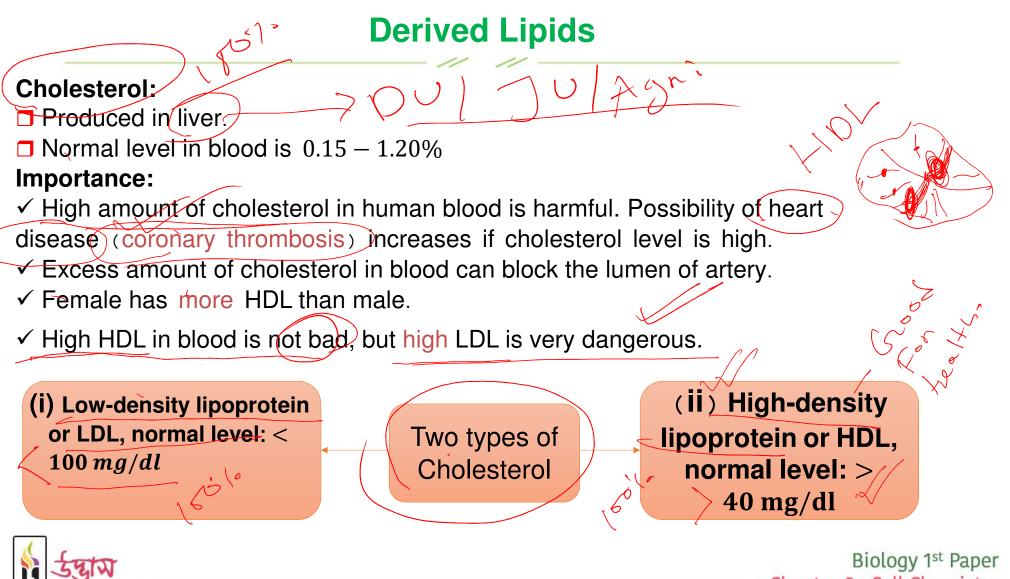
Lipoprotein:

- ✓ Mainly acts as structural component of cellular organelles.
- Involved in electron transport system of mitochondria to help in production of energy.
- Mitochondria, microsome, nucleus, lamelle of chloroplast, plasma protein of human blood.

Lipid derivatives

 H_2

These are isoprenoid compound 27-29 carbon atoms.
 Steroids that have one or more hydroxyl group are called sterol.
 Example: Cholesterol, stigmasterol, ergosterol, β sistosterol, digitalin.


 \checkmark Much of the cholesterol is found in animal body.

- ✓ But purple yum (chupri alu) has the highest amout of cholesterol.
- ✓ Ergosterol is found in yeast and *Neurospora*.

✓ Digitalin is used in the treatment of heart.

্রি একাডেমিক এন্ড এন্টমিপন কেয়ার

Steroid:

Chapter 3 : Cell Chemistry

Derived Lipids

21

Terpenes:

Composed of 10-40 isoprenoid units.

Used in barnish and production of aromatic cosmetics.

Found In Tulsi/Holy Basil and Mint

Rubber:

5 Composed of 3,000-6,000 isoprene units. Source: Ficus elastic is a natural rubber plants.

Rubber is used to manufacture different rubber materials (tire).

Biology 1st Paper Chapter 3 : Cell Chemistry

Importance of Lipids

- \checkmark Lipid remains as stored food in animals.
- ✓ Fat preserved under animal skin acts as heat insulator.
- ✓ Phospholipid and glycolipid are structural components of cell membrane.
- ✓ Lipid soluble vitamins are A, D, E and K.
- Some lipids such as lipoprotein, hormone and cholesterol are synthesized from lipid.
- \checkmark Phospholipid also acts as an ion carrier.
- Terpene-like lipids produce aroma in plants. 5//

Which creates fragnance in plant?

- (a) Terpinoid(b) Glycolipid(c) Triglyceride
- (d) Steroid

Which one is not an example of simple lipid?

(a) Fat(b) Oil(c) Rubber(d) Wax

