

LECTURE : C-03

CHAPTER 04 : CHEMICAL EQUILIBRIUM

www.udvash.com

Equilibrium means the rate is equal not the amount.

Chapter 04 : Chemical Equilibrium

Poll Question-01

 $\Box H_{2}(g) + Cl_{2}(g) \rightleftharpoons 2HCl(g);$ Find the unit of Kp of the given reaction? (a) atm^{-1} (b) atm^{-3} (c) None of the above (d) atm^{2} $\Box M = 2 - (1+1)$ = 2 - 2 $\Box M = 2 - (1+1)$ $\Box M = 2$ $\Box M = 2$ \Box

K_P or K_C?

If the total pressure of the system is not given, K_p can not be determined \Box If the (PRESSURE) is given, then K_p \Box If the (VOLUME) is given, then K_c \Box If (CONDITION) is not given, then K_c \Box ordinion \Box Temp.- \Box Pressure

$$\begin{array}{c}
 \text{Math Problem} \\
 \text{N}_{2}(g) + 3H_{2}(g) \neq 2NH_{3}(g) : (k) \neq \frac{1}{27} atm^{-2} \\
 \frac{2}{3}NH_{3}(g) \neq H_{2}(g) + \frac{1}{3}N_{2}(g); \text{ find } K_{P} = ? \\
 \text{Number in traching } (2) - 1; \quad \text{side change } \\
 \frac{1}{3} \text{ multiplication} \\
 3. nb \neq nA; k_{c} = (k)^{-N} \\
 \vdots k_{P} = (k_{P})^{-3} = \frac{1}{(2R)^{-3}} = \frac{1}{3} \\
 \vdots k_{P} = (k_{P})^{-3} = \frac{1}{(2R)^{-3}} = \frac{1}{3} \\
 \vdots k_{P} = (k_{P})^{-3} = \frac{1}{(2R)^{-3}} = \frac{1}{3} \\
 \vdots k_{P} = (k_{P})^{-3} = \frac{1}{3} \\
 \vdots k_{P} = (k_{P$$

Chapter 04 : Chemical Equilibrium

_ Chapter 04 : Chemical Equilibrium

Acid-Base

Theory	Acid	Base
Arrhenius	Donates H ⁺ in aqueous solution	Donates OH ⁻ in aqueous solution
** ag. nowhanke	- He	NaOH
Bronsted & Lowry	Donates H ⁺	Accepts H ⁺
(Ht retated)	Hel	NH3
		(NH3+H+ -> NH4
Lewis	Accepts a lone pair of electron	Donates a pair of electron
Deals with	AIU3	Have Litt ASHA
र्षे उद्योग अवार्डसिक अड विभिन्न तकाव		Chemistry 1 st Pap Chapter 04 : Chemical Equilibrit

per Chapter 04 : Chemical Equilibrium

_Chapter 04 : Chemical Equilibrium

Poll Question-05

Which mixture will act as a buffer solution?

[DU'13-14]

(a) 0.2 M 10 mL CH₃COOH + 0.2 M 10 mL NaOH (b) 0.2 M 10 mL CH₃COOH + 0.1 M 10 mL NaOH (c) 0.1 M 10 mL CH₃COOH + 0.2 M 10 mL NaOH (d) 0.1 M 10 mL HCI + 0.2 M 10 mL NaOH

مەندەللە مە مەللام

Name	Formula	K,	рК _а
Hydrochloric acid	HCI	1.0×10^7	-7.00
Phosphoric acid	H_3PO_4	$7.5 imes 10^{-3}$	2.12
Hydrofluoric acid	HF	$6.6 imes 10^{-4}$	3.18
Lactic acid	CH ₃ CH(OH)CO ₂ H	$1.4 imes10^{-4}$	3.85
Acetic acid	CH ₃ CO ₂ H	$1.8 imes 10^{-5}$	4.74
Carbonic acid	H_2CO_3	$4.4 imes 10^{-7}$	6.36
Dihydrogenphosphate ion	$H_2PO_4^-$	$6.2 imes 10^{-8}$	7.21
Ammonium ion	$\mathrm{NH_4}^+$	$5.6 imes 10^{-10}$	9.25
Hydrocyanic acid	HCN	$4.9 imes 10^{-10}$	9.31
Hydrogencarbonate ion	HCO_3^-	$5.6 imes 10^{-11}$	10.25
Methylammonium ion	CH ₃ NH ₃ ⁺	$2.4 imes10^{-11}$	10.62
Hydrogenphosphate ion	HPO_4^{2-}	4.2×10^{-13}	12.38
For Acid - K	a 🕇	pK _a ↓	Acid
For Base - K	Кь 🔨	рК _ь ↓	Base
उ या जिल्हा के अव्याप्ति न स्वाय			

Μ

লেগে থাকো সৎ ভাবে, স্বপ্ন জয় তোমারই হবে।

www.udvash.com