

CLASS 11 ACADEMIC PROGRAM-2020

HIGHER MATH

Lecture : HM-07

Chapter 3 : Straight lines

AREA OF TRIANGLE

150%

The co-ordinate of three vertices of a triangle are given, we are to find the area:

Higher Math 1st Paper Chapter 3: Straight lines

The area can be (+)ve or (-)ve based on the sequence of points taken anti-clockwise or clockwise.

But the unsigned value will be the answer here.

Chapter 3 : Straight lines

A(x,y), B(1,2) and C(2,1) form a triangle of 6 unit square area, show that x+y=15

 \Box Given, A(0,0), B(2,1) and C(6,2) are three vertices of a triangle, what's the

area?

(a) 2

(b) -1

(c) 1

(d) 6

$$t = \frac{1}{2} \left| \frac{2}{6} \right| = \frac{1}{2} \left(\frac{4}{6} \right)$$

❖ Given, four points are A(t-4, -2), B(t, t+3), C(2t+1,1) and D(t-3,1) and O is

origin, find the ratio ΔOAB : ΔOCD and show that if t=4 the area of those two triangles

will be the same.

Higher Math

Chapter 3: Straight lines

CONDITIONS OF COLLINEARITY OF THREE POINTS

The area of the triangle $\triangle ABC$ will be zero which means,

$$AB + BC = AC$$

The determinant formed by those three points will be zero.

• Given A(t+1,1), B(2t+1,3) and C(2t+2,2t) are three vertices of a triangle, find the area.

$$= \frac{1}{2} \begin{vmatrix} \frac{1}{2} & \frac{2}{2} \\ \frac{1}{2} & \frac{2}{2} \end{vmatrix} = \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 4)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 3x - 2)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 3x - 2)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 3x - 2)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 3x - 2)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 3x - 2)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 3x - 2)$$

$$= \frac{1}{2} (2x^{2} - 3x - 2) = \frac{1}{2} (2x^{2} - 3x - 2)$$

$$= \frac{1$$

Higher Math

Chapter 3 : Straight lines

 \square (k,-1),(6,3) and (0,0) are collinear, what's the value of k?

- (c) 3
- (d) 2

PRACTICE PROBLEM

- (i). (x, y), (5,3) and (-2, -4) are collinear, show that x y 2 = 0
- (ii). Three vertices of $\triangle ABC$ are (-1,2), (2,3) and (3,-4). The co-ordinate of a point P is (x,y). Show that $\frac{\triangle PAB}{\triangle ABC} = \frac{x-3y+}{22}$
- (iii). (-1,2), (2,3) and (3,-4) forms a triangle of whiche the centroid is G. Show $\Delta ABC = 3\Delta ABG = 3\Delta BCG = 3\Delta CAG$
- (iv). Find the area of the triangle formed by A(2,-1), B(a+1,a-3) and C(a+2,a). If the points are collinear what will be the value of a?

LOCUS

The equation formed by variables following the conditions is the equation of

 \square A set of points always maintain 4 unit distance from the point (2, -1). The equation of P(2,4)

locus will be-

(a)
$$x^2 + y^2 + 4x - 2y - 11 = 0$$

(b)
$$x^2 + y^2 - 4x + 2y - 11 = 0$$
(c) $x^2 + y^2 - 4x - 2y - 11 = 0$
 $x^2 - 4x + 2y - 11 = 0$
 $x^2 - 4x + 2y - 11 = 0$

(c)
$$x^2 + y^2 - 4x - 2y - 11 = 0$$

(d)
$$x^2 + y^2 + 4x + 2y - 11 = 0$$

A(-6, -3) and B(6,3) are two fixed points. The length of the medians drawn on AB line segment from a set of points is always 5 unit. Find the equation of locus.

A(0,4) and B(0,6) are two fixed points. There's a set of points at which AB line segment forms a right angle. Find the equation of locus. ALP point, AB forms LAPB = 90° P (a,y) AAPB = right angled triungle pithagonus: PAZ+PBZ=ABZ $+(\sqrt{(2-0)^2+(9-6)^2})=(\sqrt{(9-0)^2+(9-6)^2})$ +(52-4) =0 = 122+y2-10y +24=0 9 (2,y) = anjy Higher Math Chapter 3: Straight lines

Example: Find the equation of locus of points equidistant from the point (-2,5) and x axis.

$$\pi + 4x + 4y + y - 10y + 28 = y$$

$$= \pi \left[x^2 + 4x - 10y + 29 = 0 \right]$$
Am)

There's a set of points of which the square of distance from x axis is equal to the

distance from y axis What's the equation of locus?

(a)
$$x^2 = 4y$$

(b)
$$y^2 = 4x$$

(b)
$$y^2 = 4x$$

(c) $x^2 = 4y^2$

(d)
$$y = 2x$$

PRACTICE PROBLEM

- (i). Find the equation of locus of points for which the sum of the distance from the points A(3,0) and B(-3,0) is always 10 unit.
- (ii). The distance of a set of points from A(2,0) is three times of the distance from the line x=0. Find the equation of locus.
- (iii). The ratio of the distance of a set of points from the origin (0,0) and (-5,0) is 3:4, find the equation of locus.

X= cap 25

না বুঝে মুখস্থ করার অভ্যাস প্রতিভাকে ধ্বংস করে

