ENGINEERING ADMISSION PROGRAM 2020

LECTURE : C-03

CHAPTER 04 : CHEMICAL EQUILIBRIUM

www.udvash.com

> Chemical equilibrium arises with the equal rate not equal amount.

> It's a permanent state.

> It's a dynamic state on which <u>catalyst has no effect</u>.

A reversible reaction doesn't terminate rather reaches equilibrium. And sometimes equilibrium is considered as termination.

Activity or active mass

Aqueous: Molar Concentration (M) Gas: Partial Pressure (atm) $4q \neq liq$ $4q \neq liq$ $\delta liquid : 1$ $\delta Solid : 1$

Partial pressure= Total pressure× mol fraction } Math. Concentration = mol ÷ volume (L)

If, K=1; (R=P); Exactly 50% conversion (extremely rare)

Chemistry 1st Paper Chapter 04 : Chemical Equilibrium

 $\frac{P}{R} = 1$

Unit of K_P,K_C

Actually there is no unit for them, but for our exam 'YEAH'

$\mathcal{K}_{c} = (molL^{-1})^{\Delta n}$; Here $\Delta n = product mole - reactant mole$ (aq) + Gas.

 $K_P = (atm)^{\Delta n}$; Here $\Delta n = product mole - reactant mole$ (gas) orly.

Poll Question 01

Poll Question 02

For a reversible reaction $\Delta n = \frac{1}{2}$, at what temperature K_P becomes 8× greater than K_C ? [$R = 0.0821 L atm mol^{-1} K^{-1}$] [BUET 2014-15]

In a 3L container 12g H₂,140g N₂ react and produce <u>34g NH₃</u> at the equilibrium state. Calculate the Eq. constant?

Type-03 (No initial amount)

In a 21 container H_2 and N_2 react and produce $1 \mod NH_3$ at the equilibrium state. Calculate the Eq. constant?

Type-04 (percentage at equilibrium)

In a 4L container there is 20%(mol) NH₃ the equilibrium. if the total pressure of the container is 1.5 atm. Calculate the Eq. constant. [RUET'03-04,05-06,10-11]

Chapter 04 : Chemical Equilibrium

Math Problem

If the slope of InK_p vs T^{-1} is -100K. Then $\Delta H = ?$

Math Problem

PCl₅(g) \rightleftharpoons PCl₃(g) + Cl₂(g); Δ H = +90 kJmol⁻¹. At 0 °C temperature Eq. constant is 0.00564 atm.

calculate the Eq. constant at 27°C.

1 DH = 90×103 Jmol-1 (H.W)

Type -07: Dissociation rate (\propto)

The amount dissociated for per mole

Math Problem

In a 2L container, $4 \mod H_2$ & $2 \mod N_2$ react. $20\% \text{ of } N_2$ is converted to $NH_{3.}$ calculate the Eq. constant. [BUET'06-07, BUTex'07-08]

2NHz 342+ 05' 22 0'8 2- 2 eg'.

 $K_{c} = B.K.N.$

x = 0.2 7 O'2_ 3

Math Problem

In a 2L container 4mol H₂, 2mol N₂ react .20% of H₂ is converted to $NH_{3.}$ Calculate the Eq. constant.

Acid-Base

Theory	Acid	Base
Arhenious	Produce H ⁺ in solution.	Produce OH- in solution
Bronsted-Lowry	H ⁺ donor	H ⁺ acceptor
Lewis	Electron pair acceptor	Electron pair donor

Name	Formula	K	PK.
Hydrochloric acid	HCl	$1.0 imes 10^7$	-7.00
Phosphoric acid	H ₃ PO ₄	$7.5 imes 10^{-3}$	2.12
Hydrofluoric acid	HF	$6.6 imes10^{-4}$	3.18
Lactic acid	CH ₃ CH(OH)CO ₂ H	$1.4 imes10^{-4}$	3.85
Acetic acid	CH ₃ CO ₂ H	$1.8 imes 10^{-5}$	4.74
Carbonic acid	H_2CO_3	$4.4 imes 10^{-7}$	6.36
Dihydrogenphosphate ion	$H_2PO_4^-$	$6.2 imes 10^{-8}$	7.21
Ammonium ion	$\mathrm{NH_4}^+$	$5.6 imes 10^{-10}$	9.25
Hydrocyanic acid	HCN	$4.9 imes 10^{-10}$	9.31
Hydrogencarbonate ion	HCO_3^-	$5.6 imes 10^{-11}$	10.25
Methylammonium ion	CH ₃ NH ₃ ⁺	$2.4 imes 10^{-11}$	10.62
Hydrogenphosphate ion	HPO_4^{2-}	4.2×10^{-13}	12.38

Dissociation constant of base

____ Chapter 04 : Chemical Equilibrium

_ Chapter 04 : Chemical Equilibrium

pH & pOH

 $pH = -\log(H^{+}) \checkmark$ $pOH = -\log(OH^{-}) \checkmark$

At 25°C, pH + pOH = 147

Math Problem

Is it possible for pH value to be smaller than 0 and greater than 14?

Math Problem K The [H⁺] of a fruit juice is 3.3×10^{-2} M. [**BUET'08-09**] Calculate pH ? $\alpha \cdot p^{H} = -\log\left(3 \cdot 3 \times 10^{-2}\right)$ a. Is it acidic or basic? b. Calculate pOH? C. = 1.48 b. Acidie c. p^{oH} = 14 - P^H = 12'52 250

Poll Question 04

Math Problem

At 298K temp. for acetic acid $K_a = 1.8 \times 10^{-5} \text{ mol dm}^{-3}$. calculate pH of 0.1 mol dm⁻³ solution. [BUET'06-07,BUTex'07-08]

$$= -\log \sqrt{1.8 \times 10^{-5} \times 0.1}$$

= $\Box = 2.88$

A: weak acid + salt Buffer Solution B: weak base + salt

i. Resistant for little amount of weak acid or base.

ii. Weak acid or base is a must for making buffer solution.

iii. In the acid-base mixture, to form a buffer solution, weak one has to be larger in amount.

Poll Question 05

Which mixture act as buffer solution?

acid
$$(\omega)$$
 [DU'13-14]
 $n = \sqrt{.5}$

(a) $0.2 \text{ M} 10 \text{ mL } \text{CH}_3\text{COOH} + 0.2 \text{ M} 10 \text{ mL } \text{NaOH}$ (b) $0.2 \text{ M} 0 \text{ mL } \text{CH}_3\text{COOH} + 0.1 \text{ M} 0 \text{ mL } \text{NaOH}$ (c) $0.1 \text{ M} 10 \text{ mL } \text{CH}_3\text{COOH} + 0.2 \text{ M} 10 \text{ mL } \text{NaOH}$ (d) 0.1 M 10 mL HCl + 0.2 M 10 mL NaOH

Math Problem

To form a buffer solution with 10.0 pOH, with 50cm³ 0.05M HCOOH how much (cm^3) (0.10)/ HCOONa need to be added? $[K_{\rm HCOOH} = 1.8 * 10^{-4}]$ ~poH = 10 pH = pKa + log <u>Msalt</u> Nacid. /PH = (14-10) = 4 $(\mathbf{y}) = -\log\left(\frac{1.8 \times 10^{-9}}{9}\right) + \log \frac{V_{s}}{9} \frac{S_{s}}{V_{a}.S_{A}}$ pkaz-log Ka $4 = -\log(1.8 \times 10^{-4}) + \log \frac{V_{5.0.1}}{50 \times 0.05}$ $\frac{V_{5.0.1}}{V_{5.0.5}}$

লেগে থাকো সৎ ভাবে, স্বপ্ন জয় তোমারই হবে।

www.udvash.com