

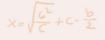
VARSITY 'Ka' ADMISSION PROGRAM-2020

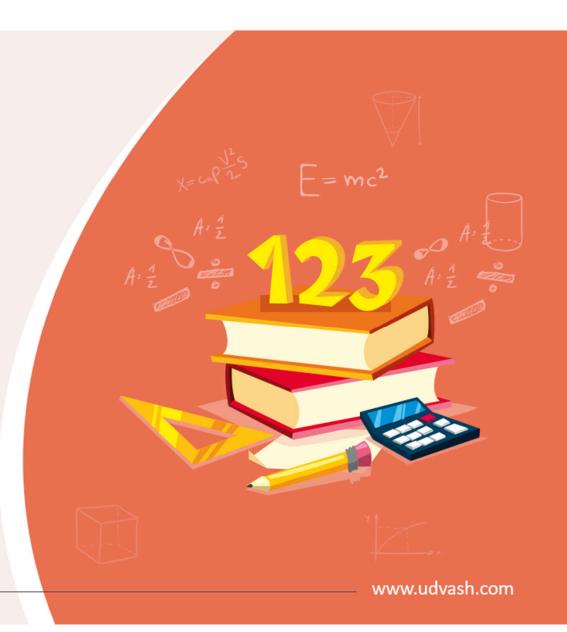
HIGHER MATH

Lecture : M-02

Chapter 02 : Vector

Chapter 08 : Function and Graph of Function





Chapter-08 Function and Graph of Function

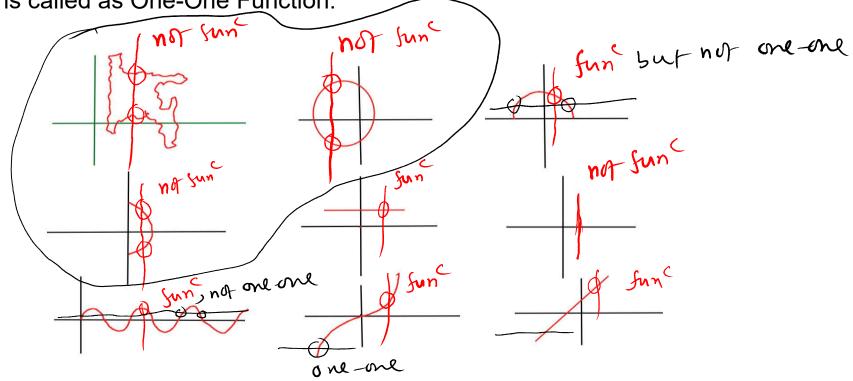
Idention of Functions from Mapping Pany was surjeque Domain: Variable (20-5) Do es-D 20 C1-D olanse b b · C children = e M M ab

Identification of Functions and One-One Function from Graph

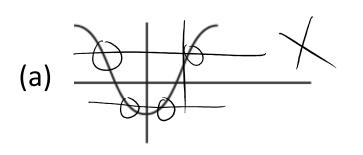
If y —axis or its' parallel line intersects the graph of a relation at one point only, then the relation is called as Function.

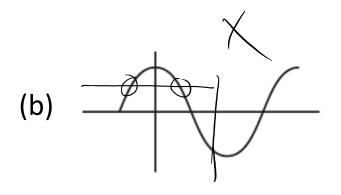
If x –axis or its' parallel line intersects the graph of a function at one point only, then the

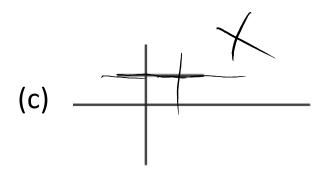
√/function is called as One-One Function.

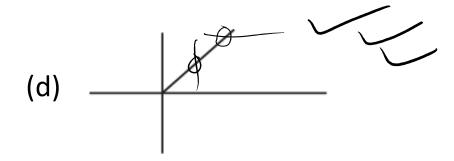


Which is One-One Function?









Determination of Domain & Range

For,
$$y = f(x)$$

For which set of real values of x, the values of y or f(x) will be real, is called as Domain of f(x).

For,
$$y = f(x)$$

For the real values of x which belong to Dom f, the obtained values of y or f(x) is called the Range of f(x).

$$f(x) = 2x + 1$$

 Sol^n :

Df. K Rf. IR

for z ants, a, sek Pf: IR Pg: IR

$$f: A \to B; f(x) = \text{Any relation}$$

Jonain

Jonain

Pomain

 $R \to R_+, R_-$

O(12,3)

Example:
$$f(R_+) \rightarrow R$$
; $f(x) = 2x + 1$

$$f(x) = \frac{2x+1}{5x+9}$$

$$Sol^{n}:$$

$$5x+9+0$$

$$5x+9+0$$

$$5x+9+0$$

$$5x+9+9y=2x$$

$$5xy+9y=2x$$

$$5xy-2x=1-x$$

$$x+-9/5$$

(at)
$$y = \frac{2x+1}{5x+9}$$

$$\Rightarrow 5xy+9y=2x+1$$

$$5xy-2x=1-9y$$

$$x(5y-2)=1-9y$$

$$x(5y-2)=1-9y$$

$$x(5y-2)=1-9y$$

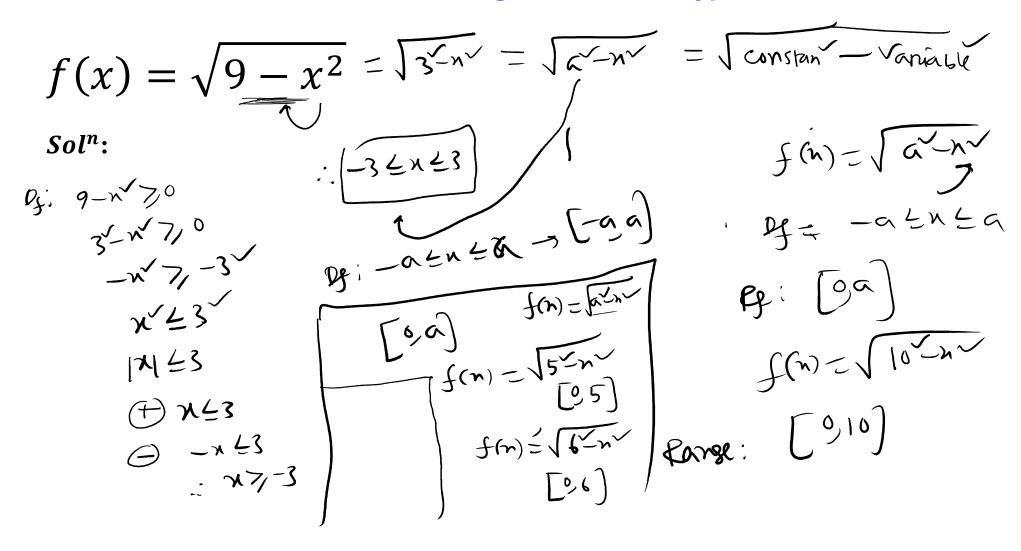
$$f(x) = \frac{2x+1}{5x+9}$$

$$Sol^{n}:$$

$$f(x) = \frac{2x+1}{5x+9}$$

$$y = \frac{2x+1}{5y-2}$$

$$x = \frac{2$$



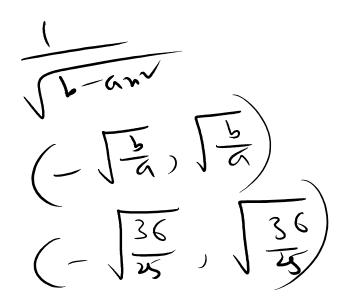
Find the Domain of
$$f(x) = \frac{1}{\sqrt{36-25x^2}}$$

$$\sqrt{(a)} \left(-\frac{6}{5}, \frac{6}{5}\right)$$

(b)
$$\left[-\frac{6}{5}, \frac{6}{5}\right]$$

(c)
$$\left(-\frac{5}{6}, \frac{5}{6}\right)$$

(d)
$$\left[-\frac{5}{6}, \frac{5}{6}\right]$$



$$f(x) = \sqrt{x^2 - 49} = \sqrt{x^2 - 49} = \sqrt{\text{onionble}} - \text{constant}$$

$$Sol^n:$$

$$\sqrt{x^2 - 497}$$

$$\sqrt{x^2 - 497}$$

$$\sqrt{x^2 - 770}$$

$$\sqrt{x^$$

Fine the Domain of
$$f(x) = \frac{1}{\sqrt{25x^2 - 16}}$$
 (a) $\left(-\infty, -\frac{5}{4}\right) \cup \left(\frac{5}{4}, \infty\right)$ (b) $\left(-\infty, -\frac{4}{5}\right) \cup \left(\frac{4}{5}, \infty\right)$ (c) $\left[-\infty, -\frac{5}{4}\right] \cup \left[\frac{5}{4}, \infty\right[$

(d) $\left| -\infty, -\frac{4}{5} \right| \cup \left[\frac{4}{5}, \infty \right]$

Domain of logarithmic functions:

 $\log_a x$

1. *x*>0

2. $a>0 & a \neq 1$

We also need to know, if, $\log_a x = p$ then, $x = a^p$



Domain of logarithmic functions:

$$f(x) = \log(5x - 1)$$

$$Sol^{n}:$$

$$5x - 1 > 0$$

$$2x - 3 > 0$$

$$2x > 3$$

$$x > 3$$

Find the Domain and Range of $f(x) = \frac{x}{|x|} = \frac{\circ}{|\circ|} = \frac{|\circ|}{|\circ|} \times$

(a)
$$d_f = \mathbb{R}, R_f = \mathbb{R}$$

(b) $d_f = \mathbb{R} \setminus \{0\}, R_f = \{-1, +1\}$

(c) $d_f = \mathbb{R}_+, R_f = [-1, +1]$

(d) $d_f = \mathbb{R}_-, R_f = \{0\}$

Since

 $\begin{cases} x \\ |x| = \frac{2}{|2|} = \frac{2}{2} = 1 \end{cases}$
 $\begin{cases} x \\ |x| = \frac{2}{|2|} = \frac{2}{2} = 1 \end{cases}$
 $\begin{cases} x \\ |x| = \frac{2}{|2|} = \frac{2}{2} = 1 \end{cases}$

$$\frac{x}{|x|} = \frac{2}{|z|} = \frac{2}{2} = 1$$

$$\frac{x}{|x|} = \frac{-2}{|-2|} = \frac{-2}{2} = -1$$

$$\frac{x}{|x|} = \frac{3.5}{|3.5|} = \frac{3.5}{3.5} = 1$$

$$\frac{-3.5}{|-3.5|} = \frac{-3.5}{3.5} = -1$$

Domain & Range of Trigonometric Function:

\bigcap	> Function	Domain	Range
	sin x	хс R	[-1,1]
Z(m) simm	cos x	\sim R	└ [-1,1]
$S^{(n)}$	tan x	$\mathbf{R} - \{(2n+1)\pi/2, n \in \mathbf{Z}\}$	R
	cot x	$\mathbf{R} - \{n\pi, n\epsilon \mathbf{Z}\}$	R
	sec x	$\mathbf{R} - \{(2n+1)\pi/2, n \in \mathbf{Z}\}$	(-∞,-1] ∪ [1, ∞)
	cosec x	$\mathbf{R} - \{\mathbf{n}\boldsymbol{\pi}, \mathbf{n}\boldsymbol{\epsilon}\mathbf{Z}\}$	(-∞,-1] ∪ [1, ∞)

 $\begin{bmatrix} -1 \\ 1 \end{bmatrix}$

Domain & Range of Trigonometric Function:

Find the domain & range of $f(x) = 2 + 3\sin x$.

Range of
$$f(x) = 2 + 3\sin x$$
.

Range: $\left[m_{in}^{m}, m_{an}^{m} \right]$
 $= 2 - 3 = -1$
 $m_{in}^{m} \cdot 2 + 3x(-1) = 5$
 $= 5$

Shortcut (Inverse Function)

$$f(n) = \frac{x_{0}(n+b)}{c_{0}(n+b)}$$

$$f(n) = \frac{-4n+b}{c_{0}(n+b)}$$

$$f(n) = \frac{-4n+b}{c_{0}(n+b)}$$

$$f(n) = \frac{-4n+b}{c_{0}(n+b)}$$

$$f(n) = \frac{-3n+b}{c_{0}(n+b)}$$

If $f: R \to R$; f(x) = 2x + 1then what will be the value of $f^{-1}(x)$?

(a)
$$\frac{x+1}{2}$$

(b)
$$\frac{x-2}{1}$$

(c)
$$\frac{x-1}{2}$$

(d) None

$$y = 2n + 1$$

$$y = 2n$$

$$y = \sqrt{2}$$

$$= \sqrt{2}$$

Composite Function:

Composite Function:

If
$$f(x) = \sqrt{x-1}$$
, $g(x) = \underbrace{x^2 + 2}$, then find $(g \circ f)(2) = ?$

$$(30f)(2)$$
 $= g(f(2))$
 $= g(1)$
 $= 1^2 + 2$
 $= 3$

$$f(x) = \sqrt{x-1}$$
 $f(z) = \sqrt{2-1} = 1$

Problem related to the function value:

If
$$f: R \to R$$
; $f(x) = \begin{cases} 3x + 1, & x > 3 \\ x - 2, -2 \le x \le 3, \text{ then } \\ 2x + 3, & x < -2 \end{cases}$ find $f(2), f(4), f(-1), f(-3)$.

$$f(2) = (x-2)$$
.
 $f(4) = 3x^{4}$
 $f(-1) = x-2$
 $f(-3) = 2x+3$

Some special functions:

• Even function:
$$f(n) = casn$$

$$f(n) = n$$

$$f(-n) = casn$$

$$f(-n) = f(-n) = f(-$$

• Odd function:
$$f(n) = sin(-n) = -sin(n) = -f(n)$$

- ◆ Identity Function: f(m) こ ×
- ◆ Constant function: f(x) = 10

output = input

Which one is even function?

(a)
$$f(x) = tanx$$

$$f(-n) = tan(-n) = -tan(-n) = -tan(-n)$$
(b) $f(x) = x^2 + 2x$

$$f(-n) + 2(-n) = -tan(-n) = -tan(-n)$$
(c) $f(x) = sinx + 2$

$$f(-n) + 2(-n) = -tan(-n)$$

$$f(-n) + 2(-n) = -tan(-n)$$

$$f(-n) + 2(-n) = -tan(-n)$$
(d) None

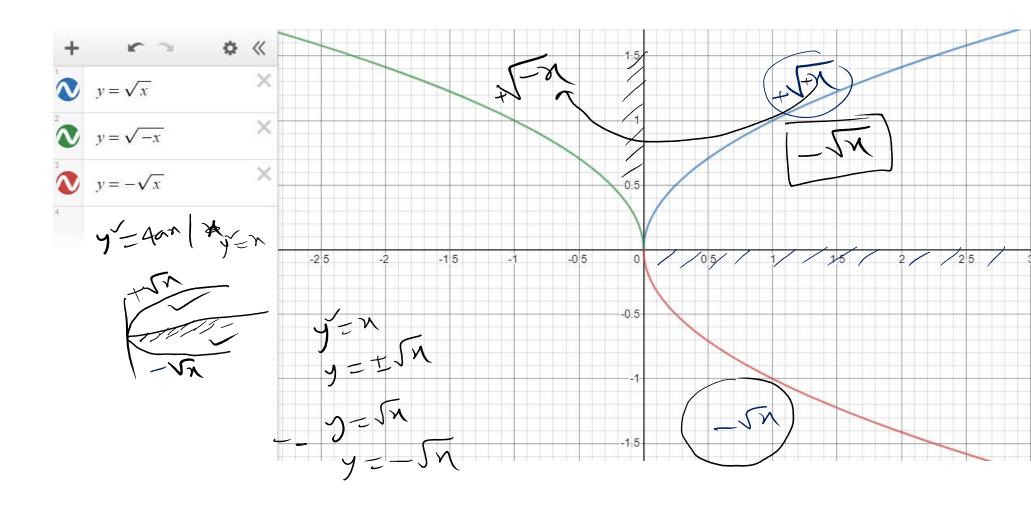
(a)
$$f(x) = tanx$$

$$(-n) = n \leq 2n$$

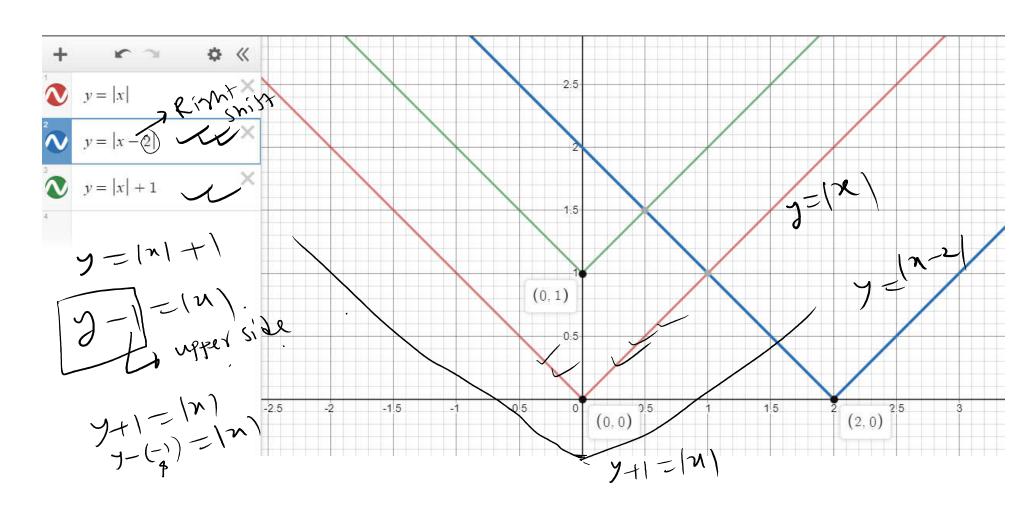
(b)
$$f(x) = x^2 + 2x$$

$$sin(-n)+2 = -sinn+2$$

Graph of Functions (Symmetry)



Graph of Functions (Shifting):



Chapter-02: Vector

Determination of magnitude and internal angle

Concept:

- (i) For a vector $\vec{A} = x\hat{i} + y\hat{j} + z\hat{k}$, $|\vec{A}| = \sqrt{x^2 + y^2 + z^2}$
- (ii) If the angle between two vectors \vec{A} and \vec{B} is θ ,

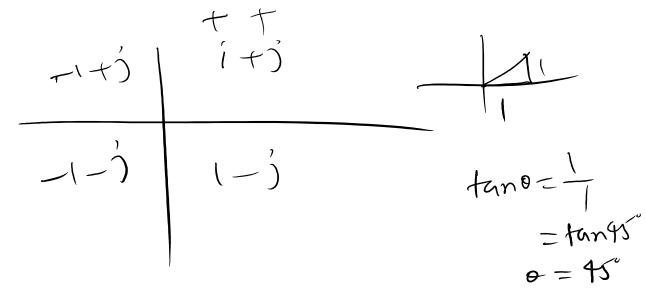
then
$$\vec{A} \cdot \vec{B} = AB \cos \theta \Rightarrow \cos \theta = \frac{\vec{A} \cdot \vec{B}}{AB}$$
;

Determination of magnitude and internal angle

If $\vec{P} = 4\hat{i} - 2\hat{j} + 4\hat{k}$ and $\vec{Q} = 4\hat{i} - 2\hat{j} - \hat{k}$ then what's the angle between \vec{P} and \vec{Q} ?

Find the angle that the vector $\overline{A} = \hat{i} + \hat{j}$ makes with the x-axis.

- (b) 210°
- (c) Both a & b
- (d) None



Related to unit vector

Find the perpendicular unit vector on the plane formed by

$$\overline{A} = \widehat{i} + \widehat{j} + \widehat{k}$$
 and $\overline{B} = \widehat{i} - 3\widehat{j} + 2\widehat{k}$.

Related to perpendicular or parallel vector

Concept:

- (i) Condition on two perpendicular vectors, $\vec{A} \cdot \vec{B} = 0$
- (ii) Condition on two parallel vectors, $|\vec{A} \times \vec{B}| = 0$

Shortcut for MCQ:
$$\vec{A} = A_x \hat{i} + A_y \hat{j} + A_z \hat{k}$$
; $\vec{B} = B_x \hat{i} + B_y \hat{j} + B_z \hat{k} \hat{k}$ if $\vec{A} | |\vec{B}|$ then $\vec{B}_x = \frac{A_y}{B_y} = \frac{A_z}{B_z}$

Related to perpendicular or parallel vector

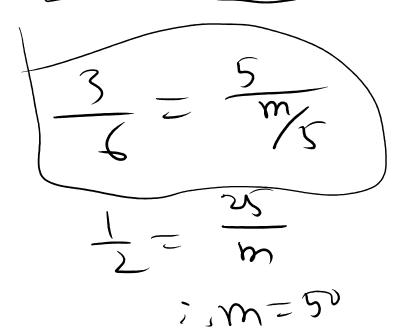
For which value of a, $\vec{A} = 8\hat{i} + \hat{j} - a\hat{k}$ and $\vec{B} = 4\hat{i} - 2\hat{j} + 5\hat{k}$ will be perpendicular on each other?

$$A.\overline{8} = 0$$
 $8 \times 4 + 1 \wedge (-2) + (-9) \wedge 5 = 0$
 $a = ()$

For which value of m, $4\hat{i} + 3\hat{j} + 5\hat{k} & 8\hat{i} + 6\hat{j} + \frac{m}{5}\hat{k}$ will be parallel?

(a)
$$\frac{10}{25}$$

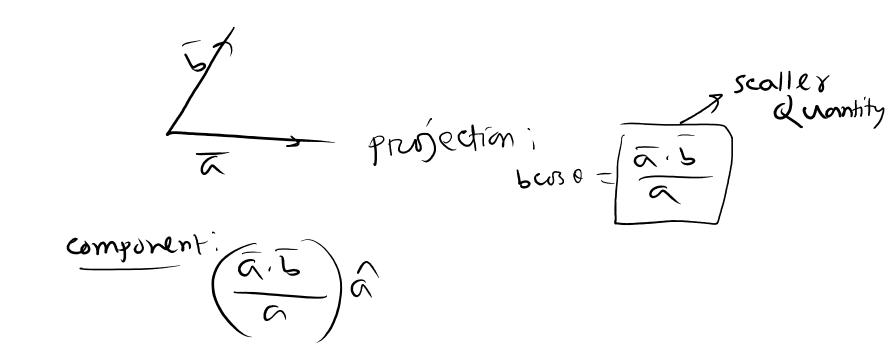
- (b) $\frac{5}{3}$
- (c) 50
- (d) None



Related to projection and component

Related to projection and component

If $\vec{a} = \hat{i} + 2\hat{j} + 2\hat{k} \otimes \vec{b} = 4\hat{i} + 8\hat{j} - \hat{k}$ then find the component of \vec{b} on $\vec{a} \otimes \vec{b} = 4\hat{i} + 8\hat{j} - \hat{k}$ then find the component of \vec{b} on $\vec{a} \otimes \vec{b} = 4\hat{i} + 8\hat{j} - \hat{k}$ then find the component of \vec{b} on $\vec{a} \otimes \vec{b} = 4\hat{i} + 8\hat{j} - \hat{k}$ then find the component of $\vec{b} \otimes \vec{b} = 4\hat{i} + 8\hat{j} - \hat{k}$ then find the component of $\vec{b} \otimes \vec{b} = 4\hat{i} + 8\hat{j} - \hat{k}$ then find the component of $\vec{b} \otimes \vec{b} = 4\hat{i} + 8\hat{j} - \hat{k}$ then find the component of $\vec{b} \otimes \vec{b} = 4\hat{i} + 8\hat{j} - \hat{k}$ then find the component of $\vec{b} \otimes \vec{b} = 4\hat{i} + 8\hat{j} - \hat{k}$ then find the component of $\vec{b} \otimes \vec{b} = 4\hat{i} + 8\hat{j} - \hat{k}$ then find the component of $\vec{b} \otimes \vec{b} = 4\hat{i} + 8\hat{j} - \hat{k}$ then find the component of $\vec{b} \otimes \vec{b} \otimes \vec{b} = 4\hat{i} + 8\hat{j} - \hat{k}$ then find the component of $\vec{b} \otimes \vec{b} \otimes \vec{b} \otimes \vec{b} \otimes \vec{b} = 4\hat{i} + 8\hat{j} - \hat{k}$ then find the component of $\vec{b} \otimes \vec{b} \otimes \vec$



Related to area

Concept:

 \overrightarrow{A} and \overrightarrow{B} are two vectors,

- ► If they indicate two side of a triangle then area, $\Delta = \frac{1}{2} |\vec{A} \times \vec{B}|$
- >If they indicate two diagonal of a parallelogram then area, $\Delta = \frac{1}{2} |\vec{A} \times \vec{B}|$
- ►If they indicate two side of a parallelogram then area, $\Delta = |\vec{A} \times \vec{B}|$

Related to area

If $\vec{P} = 4\hat{i} - 4\hat{j} + \hat{k} \& \vec{Q} = 2\hat{i} - 2\hat{j} - \hat{k}$ is expressed as two adjacent sides of a parallelogram, then find it's area. [CUET'15-16, DU'17-18]

$$\frac{4}{4} - 4$$

$$\frac{4}{2} - 2 - 1$$

$$\frac{7}{4} + 4$$

$$\frac{7}{4}$$

X= Cap 25

না বুঝে মুখস্থ করার অভ্যাস প্রতিভাকে ধ্বংস করে

www.udvash.com