मातालाल TEXT

(For HSC & Pre-Admission)

উচ্চতর গণিত প্রথম পত্র

অধ্যায়-০৫ : বিন্যাস ও সমাবেশ

সার্বিক ব্যবস্থাপনায়

ব্রদ্রাম ম্যাথ টিম

প্রচ্ছদ

মোঃ রাকিব হোসেন

অক্ষর বিন্যাস

আলাউদ্দিন, আরাফাত ও রাশেদ

অনুপ্লেরণা ও সহযোগিতায়

মাহমুদুল হাসান সোহাগ মুহাম্মদ আবুল হাসান লিটন

কৃতজ্ঞতা

ঠদ্যাম-উন্মেষ-উত্তরণ শিক্ষা পরিবারের সকল সদস্য

প্রকাশনায়

ব্রদ্বাম একাডেমিক এন্ড এডমিশন কেয়ার

প্রকাশকাল

প্রথম প্রকাশ: জানুয়ারি, ২০২৩ ইং সর্বশেষ সংস্করণ: সেপ্টেম্বর, ২০২৩ ইং

অনলাইন পরিবেশক

rokomari.com

কপিরাইট © ব্দ্রাম

সমস্ত অধিকার সংরক্ষিত। এই বইয়ের কোনো অংশই প্রতিষ্ঠানের লিখিত অনুমতি ব্যতীত ফটোকপি, রেকর্ডিং, বৈদ্যুতিক বা যান্ত্রিক পদ্ধতিসহ কোনো উপায়ে পুনরুৎপাদন বা প্রতিলিপি, বিতরণ বা প্রেরণ করা যাবে না। এই শর্ত লঙ্খিত হলে উপযুক্ত আইনি ব্যবস্থা গ্রহণ করা হবে।

প্রিয় শিক্ষার্থী বন্ধুরা,

তোমরা শিক্ষা জীবনের একটি গুরুত্বপূর্ণ ধাপে পদার্পণ করেছো। মাধ্যমিকের পড়াশুনা থেকে উচ্চ-মাধ্যমিকের পড়াশুনার ধাঁচ ভিন্ন এবং ব্যাপক। মাধ্যমিক পর্যন্ত যেখানে 'বোর্ড বই'-ই ছিল সব, সেখানে উচ্চ-মাধ্যমিকে বিষয়ভিত্তিক নির্দিষ্ট কোনো বই নেই। কিন্তু বাজারে বোর্ড অনুমোদিত বিভিন্ন লেখকের অনেক বই পাওয়া যায়। এ কারণেই শিক্ষার্থীরা পাঠ্যবই বাছাইয়ের ক্ষেত্রে দ্বিধায় ভোগে। এছাড়া মাধ্যমিকের তুলনায় উচ্চ-মাধ্যমিকে সিলেবাস বিশাল হওয়া সত্ত্বেও প্রস্তুতির জন্য খুবই কম সময় পাওয়া যায়। জীবনের অন্যতম গুরুত্বপূর্ণ এই ধাপের শুরুতেই দ্বিধা-দন্দ থেকে মুক্তি দিতে আমাদের এই Parallel Text। উচ্চ-মাধ্যমিক পর্যায়ে শিক্ষার্থীদের হতাশার একটি মুখ্য কারণ থাকে পাঠ্যবইয়ের তাত্ত্বিক আলোচনা বুঝতে না পারা। এজন্য শিক্ষার্থীদের মাঝে বুঝে বুঝে পড়ার প্রতি অনীহা তৈরি হয়। তারই ফলস্বরূপ শিক্ষার্থীরা HSC ও বিশ্ববিদ্যালয় ভর্ত্ত পরীক্ষায় ভালো ফলাফল করতে ব্যর্থ হয়।

তোমাদের লেখাপড়াকে আরও সহজ ও প্রাণবন্ত করে তোলার বিষয়টি মাথায় রেখে আমাদের Parallel Text বইগুলো সাজানো হয়েছে সহজ-সাবলীল ভাষায়, অসংখ্য বাস্তব উদাহরণ, গল্প, কার্টুন আর চিত্র দিয়ে। প্রতিটি টপিক নিয়ে আলোচনার পরেই রয়েছে গাণিতিক উদাহরণ; যা টপিকের বাস্তব প্রয়োগ এবং গাণিতিক সমস্যা সমাধান সম্পর্কে ধারণা দেওয়ার পাশাপাশি পরবর্তী টপিকগুলো বুঝতেও সাহায্য করবে। তোমাদের বোঝার সুবিধার জন্য গুরুত্বপূর্ণ সংজ্ঞা, বৈশিষ্ট্য, পার্থক্য ইত্যাদি নির্দেশকের মাধ্যমে আলাদা করা হয়েছে। এছাড়াও যেসব বিষয়ে সাধারণত ভূল হয়়, সেসব বিষয়্য 'সতর্কতার' মাধ্যমে দেখানো হয়েছে।

তবে শুধু বুঝতে পারাটাই কিন্তু যথেষ্ট নয়, তার পাশাপাশি দরকার পর্যাপ্ত অনুশীলন। আর এই বিষয়টি আরও সহজ করতে প্রতিটি অধ্যায়ের কয়েকটি টপিক শেষে যুক্ত করা হয়েছে 'টপিকভিত্তিক বিগত বছরের প্রশ্ন ও সমাধান'। যার মধ্যে রয়েছে বিগত বোর্ড পরীক্ষার প্রশ্নের পাশাপাশি বুয়েট, রুয়েট, কুয়েট, চুয়েট ও ঢাকা বিশ্ববিদ্যালয়েসহ বিভিন্ন বিশ্ববিদ্যালয়ের ভর্তি পরীক্ষার প্রশ্ন ও সমাধান। এভাবে ধাপে ধাপে অনুশীলন করার ফলে তোমরা বোর্ড পরীক্ষার শতভাগ প্রস্তুতির পাশাপাশি ভর্তে পরীক্ষার প্রস্তুতিও নিতে পারবে এখন থেকেই। এছাড়াও অধ্যায় শেষে রয়েছে 'গুরুত্বপূর্ণ প্র্যাক্টিস প্রবলেম' ও 'গাণিতিক সমস্যাবলি' যা অনুশীলনের মাধ্যমে তোমাদের প্রস্তুতি পূর্ণাঙ্গ হবে।

আশা করছি, আমাদের এই Parallel Text একই সাথে উচ্চ-মাধ্যমিকে তোমাদের বেসিক গঠনে সহায়তা করে, HSC পরীক্ষায় A+ নিশ্চিত করবে এবং ভবিষ্যতে বিশ্ববিদ্যালয় ভর্তিযুদ্ধের জন্য প্রস্তুত রাখবে। তোমাদের সার্বিক সাফল্য ও উজ্জ্বল ভবিষ্যত কামনায়-

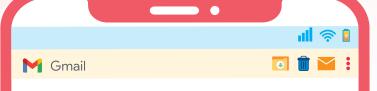
র্দ্রাম ম্যাথ টিম

উচ্চতর গণিত ১ম পত্র

অধ্যায়-০৫ : বিন্যাস ও সমাবেশ

ক্ৰ.নং	বিষয়বম্ভ	পৃষ্ঠা					
٥٥	গণনার যোজন ও গুণন বিধি						
०২	বিন্যাস						
೦೦	Factorial এবং ⁿ P _r সূত্রের ব্যবহার						
08	সবগুলো ভিন্ন নয় এরূপ বস্তুর বিন্যাস						
06	n সংখ্যক বিভিন্ন বর্ণের সবগুলো নিয়ে মোট সাজানো বিন্যাস						
০৬	পুনরাবৃত্তি ঘটতে পারে, সেরূপ ক্ষেত্রে বিন্যাস						
०१	কতগুলো বর্ণ (বা বস্তু) একত্রে রাখা বা একত্রে না রাখা						
ob	কতগুলো নির্দিষ্ট বর্ণকে (বা বস্তুকে) কখনো পাশাপাশি না রাখা						
০৯	বর্ণ (বা বস্তু) এর অবস্থান নির্দিষ্ট						
٥٥	পুনর্বিন্যাস সংক্রান্ত						
22	নির্দিষ্ট কিছু বর্ণ (বা বস্তু) ক্রম পরিবর্তন করবে না						
১২	নির্দিষ্ট কিছু বর্ণের (বা বস্তুর) আপেক্ষিক অবস্থানের পরিবর্তন						
20	ভিন্ন ভিন্ন বর্ণবিশিষ্ট শব্দ থেকে নির্দিষ্ট কিছু বর্ণ নিয়ে বিন্যাস						
\$8	নির্দিষ্ট অঙ্কের সংখ্যা গঠন						
\$&	বিজোড় সংখ্যা গঠন	೨೨					
১৬	জোড় সংখ্যা গঠন	৩ 8					
١ ٩	নির্দিষ্ট সংখ্যা থেকে ক্ষুদ্রতর এবং বৃহত্তর সংখ্যা	೨৮					
\$ b-	সমষ্টি ও গড় সংক্রান্ত	80					
১৯	n তম সংখ্যা নিৰ্ণয়	88					
২০	চক্ৰ বিন্যাস	৪৬					
	প্রশ্নমালা-৫.১						

ক্র.নং	বিষয়বস্ত	পৃষ্ঠা				
২১	সমাবেশ					
২২	বিন্যাস এবং সমাবেশের মধ্যে পার্থক্য					
২৩	সম্পূরক সমাবেশ					
২৪	$^{ m n}$ ${ m C}_{ m r}$ সূত্রের ব্যবহার সংক্রান্ত সমস্যা	৫৭				
২৫	বাছাই সংক্রান্ত	৫৮				
২৬	শর্তাধীন সমাবেশ-নির্দিষ্ট সংখ্যক বস্তু গ্রহণ বা বর্জন করে	৬২				
২৭	সমাবেশের মাধ্যমে শব্দ গঠন	৬৯				
২৮	দল বা কমিটি গঠন	99				
২৯	উৎপাদক সংখ্যা নির্ণয়	৮২				
೨೦	বিন্দু হতে সরলরেখা, ত্রিভুজ, বহুভুজ, কর্ণ ও তল গঠন	৫৫				
৩১	ছেদবিন্দু নির্ণয়	৮৭				
92	Grid সংক্রান্ত	চ৯				
೨೨	দলে বা গ্রুপে বিভক্তিকরণ	৯১				
৩ 8	বিভাজ্যতা	৯৩				
প্রশ্নমালা-৫.২						
৩৫	Brainstorming Question	১০২				
৩৬	একত্রে সব গুরুত্বপূর্ণ সূত্র	১০২				
৩৭	গুরুত্বপূর্ণ প্র্যাক্টিস প্রবলেম	200				



পারস্পরিক সহযোগিতা–ই পারে পৃথিবীকে আরও সুন্দর করতে...

সুপ্রিয় শিক্ষার্থী,

আশা করি এবারের "HSC Parallel Text" তোমাদের কাছে অতীতের চেয়ে আরো বেশি উপকারী হিসেবে বিবেচিত হবে ইনশাআল্লাহ্। বইটি সম্পূর্ণ ক্রটিমুক্ত রাখতে আমরা চেষ্টার কোনো ক্রটি করি নাই। তবুও কারো দৃষ্টিতে কোন ভুল ধরা পড়লে নিম্নে উল্লেখিত ই-মেইল এ অবহিত করলে কৃতজ্ঞ থাকবো এবং আমরা তা পরবর্তী সংস্করণে সংশোধন করে নেব ইনশাআল্লাহ।

Email: solutionpt.udvash@gmail.com

Email-এ নিমুলিখিত বিষয়গুলো উল্লেখ করতে হবে:

- (i) "HSC Parallel Text" এর বিষয়ের নাম, অধ্যায়, ভার্সন (বাংলা/ইংলিশ), (ii) পৃষ্ঠা নম্বর (iii) প্রশ্ন নম্বর (iv) ভুলটা কী
- (v) কী হওয়া উচিৎ বলে তোমার মনে হয়

উদাহরণ: "HSC Parallel Text" Math 1st Paper, Chapter-05, Bangla Version, Page-18, Question-02, দেওয়া আছে, [1] কিন্তু হবে [0]

ভুল ছাড়াও মান উন্নয়নে যেকোন পরামর্শ আন্তরিকভাবে গ্রহণ করা হবে। পরিশেষে মহান আল্লাহর নিকট তোমাদের সাফল্য কামনা করছি।

> শুভ কামনায় ব্রদ্বাম ম্যাথ টিম

বিন্যাস ও সমাবেশ

মনে করো, তোমাকে 6 টি ভিন্ন ভিন্ন অক্ষরব্লক (A, F, I, M, L, Y) দেওয়া হয়েছে। অক্ষরব্লকগুলো নিজেদের মাঝে অবস্থান পরিবর্তন করে তুমি নতুন বিন্যাস তৈরি করছো। প্রতিবার নতুন কোনো বিন্যাস তৈরি করতে তোমার সময় লাগে এক সেকেন্ড। তাহলে 6 টি অক্ষরব্লকের সবগুলো নিয়ে মোট যতগুলো বিন্যাস সম্ভব- সবগুলো তৈরিতে তোমার সময় লাগবে 12 মিনিট।

কিন্তু তোমাকে যদি এবার 6 টির বদলে 12 টি ভিন্ন ভিন্ন অক্ষর ব্লক দিয়ে সবগুলোকে যতভাবে সম্ভব সাজাতে বলা হয় এবং প্রতিবার সাজাতে তোমার যদি সময় লাগে এক সেকেন্ড তাহলে, তুমি ঘুম-খাওয়া সব ফেলে টানা গণনা করলেও এক্ষেত্রে তোমার সময় লাগবে 15 বছরের বেশি!!

আবার ধরো, তুমি সোশাল মিডিয়ায় 10 Character এর একটি পাসওয়ার্ড দিয়েছো। যেখানে Character হিসেবে ইংরেজি বড় হাতের অক্ষর (A, B, C... Z) এবং ছোট হাতের অক্ষর (a, b, c ... z) এবং অঙ্ক (0, 1, 2 9) ব্যবহার করা যায়। তোমার বন্ধু যদি পাসওয়ার্ডটি বের করতে চায় তাকে সর্বোচ্চ 8.39×10^{17} বার চেষ্টা করতে হবে।

সে যদি খাওয়া ঘুম বাদ দিয়ে প্রতি সেকেন্ডে একবার চেষ্টা করে যায় তবে তার সময় লাগবে 2660 কোটি (26.6 বিলিয়ন) বছরের বেশি!! তোমরা কি জানো, মহাবিশ্বের সৃষ্টি (বিগ-ব্যাং) কত বছর আগে হয়েছে? 13.8 বিলিয়ন বছর আগে। অর্থাৎ সৃষ্টির শুরু থেকে যতসময় অতিবাহিত হয়েছে প্রায় তার দ্বিগুণ সময়।

Y

ক্রিকেট ভক্তরা এইদিকে:

বাংলাদেশ ক্রিকেট দল যখন 15 সদস্যের প্রাথমিক দল নিয়ে বিশ্বকাপ খেলতে অংশগ্রহণ করে তখন তোমার নিশ্চয় অনেক আনন্দ হয়। তোমার মনে কি কখনো প্রশ্ন জেগেছে, এই 15 সদস্য হতে মোট কতগুলো ভিন্ন ভিন্ন একাদশ তৈরি করা যেতে পারে?

🚯 ফুটবল ভক্তরা এইদিকে:

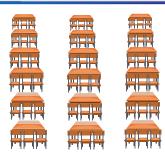
ফুটবল ভক্তরা নিশ্চয় ইংলিশ প্রিমিয়ার লীগ বা স্প্যানিশ ফুটবল লীগ 'লা লিগা' এর সাথে পরিচিত। এসব লীগে 20 টি দল রাউন্ড রবিন পদ্ধতিতে (প্রতিটা দল একে অন্যের সাথে 2টি করে ম্যাচ) খেলে। গুগলে সার্চ না করে বলতে পারবে, প্রতি লীগ সিজনে মোট কতটি ম্যাচ হয়?

বিন্যাস সমাবেশের ধারণা থাকলে গণনার এমন দারুণ সব মজার হিসাব-নিকাশ খুব সহজেই করে ফেলতে পারবে তোমরা।

গণনা (Counting) থেকে গণিতের শুরু। আদিমকাল থেকে মানুষ নিজের প্রয়োজনে হাতে গুণে গণনা শুরু করেছিল। তবে আদিমকালের থেকে এখন আমাদের গণনা অনেক বেশি আধুনিক।

기리에에 T를XT / 1/

তোমাদের ক্লাসরুমে মোট কতজন ছাত্র বসতে পারবে জিঞ্জেস করা হলে তুমি নিশ্চয়ই সবগুলো সিট গুনতে শুরু করবে না। প্রতি বেঞ্চে 3 জন বসতে পারলে এবং ক্লাসে মোট 18 টি বেঞ্চ থাকলে: আমরা বলতে পারি, ছাত্র ধারণ ক্ষমতা: $3\times 18=54$ জন। আবার বেঞ্চের সংখ্যাও তোমার প্রতিটা হাতে গোনার দরকার নাই। প্রতি কলামে 6 টা বেঞ্চ এবং মোট 3 টা কলাম থাকলে, মোট বেঞ্চ হবে $3\times 6=18$ টা।



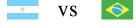
কেবল গুণের ধারণাই আমাদের কাজ অনেক সহজ করে দেয়। তোমরা নিশ্চয়ই জানো গুণ প্রকৃতপক্ষে পর্যায়ক্রমিক যোগ। আবার পর্যায়ক্রমিক গুণের জন্য আমরা ঘাত (Power) এর ধারণা নিয়ে এসেছি। একইভাবে এই অধ্যায়ে তোমরা পরিচিত হবে ফ্যাক্টোরিয়াল (Factorial) এর সঙ্গে।

আমরা এখন আর পাথরযুগের মানুষের মত সর্বক্ষেত্রে হাতে গুনে গণনা করি না। আমরা পূর্বের উদাহরণগুলোতে দেখেছি ক্ষেত্রবিশেষে এসব কাজ কত বেশি শ্রম এবং সময়সাপেক্ষ হতে পারে। বিন্যাস সমাবেশের ধারণা ব্যবহার করে বাস্তব জীবনের অনেক গণনা আমরা খুব সহজেই করে ফেলতে পারি।

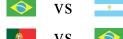
ক্রম বিবেচনা করে সাজানোর প্রক্রিয়া হলো বিন্যাস। ক্রম উপেক্ষা করে সাজানোর প্রক্রিয়া হলো সমাবেশ।

ধরো, তোমার বন্ধু রিফাতের টেলিফোন নাম্বার: 72386. এই টেলিফোন নম্বরের কোনো অঙ্কের ক্রম (Order) পরিবর্তন করে (যেমনঃ 23768) ডায়াল করলে কি তোমার বন্ধু রিফাতের টেলিফোন বেজে উঠবে? অবশ্যই না। কারণ টেলিফোন নম্বরের ক্ষেত্রে ক্রম একটি গুরুত্বপূর্ণ বিষয়। ক্রম গুরুত্বপূর্ণ এমন যেকোনো গণনা বিন্যাস (Permutation) এর অন্তর্ভুক্ত।

এবার ধরা যাক, আর্জেন্টিনা (), ব্রাজিল () এবং পর্তুগাল () একটি ত্রিদেশীয় টুর্নামেন্টে প্রত্যেকের সাথে একটি করে ম্যাচ খেললে খেলার ফিক্সচার হবে:



কিন্তু ফিক্সচারটি যদি ক্রম (Order) পরিবর্তন ভিন্নভাবে লেখা হয়। তাহলে কি সেটা ভিন্ন কিছু প্রকাশ করে?

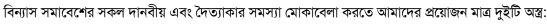


অবশ্যই না। vs o যে কথা ovs am defined and under a vs of the results of the resu

সংক্ষিপ্ত ইতিহাস (Brief History)

১১১৪ খ্রিষ্টাব্দে ভারতে বিজয়াপুরে জন্মগ্রহণ করেন দ্বিতীয় ভাস্কর (Bhaskar-II)। এই বিখ্যাত গণিতবিদ ও জ্যোতির্বিদ 1150 সালে 'সিদ্ধান্ত শিরোমণি' গ্রন্থ প্রকাশ করেন। এই বইয়ের চার খণ্ডের মধ্যে সবচেয়ে বিখ্যাত লীলাবতী প্রন্থে n সংখ্যক বস্তুর বিন্যাস সংখ্যা নির্ণয়ের সূত্র প্রদান করেন।

দ্বিতীয় ভাস্করের হাত ধরে গণিতের যে শাখা Combinatorics এর শুরু, সেখানে তোমাদের পদচারণা আনন্দময় হোক।



- (i) গণনার যোজন বিধি।
- (ii) গণনার গুণন বিধি।

চলো আমরা বিন্যাস সমাবেশের সবচেয়ে গুরুত্বপূর্ণ এই বিধি দুইটির সাথে পরিচিত হই।

বিন্যাস (Permutation)

গণনার যোজন ও গুণন বিধি (Addition and Multiplication rule of Counting)

ক্রাণা করো: অন্তর ঢাকাবাসী। সে কলেজের পরীক্ষার শেষে ছুটিতে কক্সবাজার যেতে চায়। অন্তর তার বন্ধু শাফিনের সাহায্যে ঢাকা থেকে কক্সবাজার যাওয়ার সবগুলো মাধ্যম জেনে নিলো।

শাফিন জানালো: ঢাকা থেকে কক্সবাজার যাওয়ার উপায় স্থলপথে 3 টি (Bus, Train & Car) এবং নৌপথে 2 টি (Ship & Boat)।

এখন বলো তো, অন্তর কতভাবে কক্সবাজারে যেতে পারে?

নিশ্চয়ই ধরে ফেলেছ! স্থলপথের 3 টি এবং নৌপথের 2 টি মিলে 3 + 2 = 5 ভাবে কক্সবাজার যেতে পারে।

স্থলপথে কক্সবাজার যাওয়া এবং নৌ-পথে কক্সবাজার যাওয়া পরস্পর স্বাধীন ঘটনা। যেকোনো এক উপায় গ্রহণ করেই অন্তর তার কাজ (ঢাকা থেকে কক্সবাজার যাওয়া) সম্পন্ন করতে পারে। অর্থাৎ <mark>স্বাধীন ঘটনাগুলো যোগ করে মোট উপায় নির্ণয় করা যায়।</mark> গণিতের ভাষায় এর নাম হল 'গণনার যোজন বিধি'।

ঝামেলা হলো এটা অনুধাবন করতে পারা যে- 'কখন যোগ করবো'?

মনে রাখবে, যখন কাজগুলো একটি আরেকটির উপর নির্ভর না করে, অর্থাৎ কাজগুলো স্বয়ংসম্পূর্ণ (পুরোটাই একটা Complete কাজ) হয় তখন যোগ হবে। স্বয়ংসম্পূর্ণ কাজ বুঝতে হলে বুঝে নেয়া দরকার যে- আমরা কাজ বলতে কি বলছি।

উপরের উদাহরণে কাজ হলো ঢাকা থেকে কক্সবাজার যাওয়া। (Bus, Train & Car) এবং (Ship & Boat) প্রতিটিই স্বয়ংসম্পূর্ণ কাজ। কেননা যেকোনো উপায় গ্রহণ করেই সরাসরি কক্সবাজার যাওয়া যায় অর্থাৎ কাজ সম্পন্ন করা যায়।

এবার আমরা শিখব গুণন বিধি। যোজন বিধি যদি যোগ করা হয়, তবে গুণন বিধি অর্থ হলো গুণ করা। এখন আমাদের বুঝতে হবে যে কোথায়, কখন এবং কেন গুণ করতে হবে। গুণন বিধি উপলব্ধির জন্য চলো আমরা আবার অন্তর, শাফিনের কাছে ফিরে যাই।

অন্তরের বুয়েট যাত্রা:

কক্সবাজার থেকে ছুটি কাটিয়ে ঢাকায় ফিরে অন্তরের শখ হয়েছে বুয়েটে যাবে। অন্তরের বাসা ঢাকার ফার্মগেটে। শাফিনের সাহায্যে অন্তর খোঁজ লাগালো ফার্মগেট থেকে বুয়েট যাওয়ার উপায়। শাফিন জানালো, ফার্মগেট থেকে বুয়েট যাওয়ার সরাসরি কোনো উপায় নেই। অন্তরকে প্রথমে ফার্মগেট থেকে শাহবাগ যেতে হবে। উপায় 4 টি (Bus, Train, Car, Motorcycle) এরপর শাহবাগ থেকে অন্য কোনো বাহনে বুয়েট যেতে হবে। শাহবাগ থেকে বুয়েট যাওয়ার উপায় 2 টি (Rickshaw, Bicycle)।

এবার আসো বের করে ফেলি অন্তর কত উপায়ে ফার্মগেট থেকে বুয়েটে যেতে পারে।

এখন বলো তো, এবার মোট কত উপায়ে অন্তর বুয়েট যেতে পারবে? [চিন্তা করার জন্য সময় নাও কিছুক্ষণ] পূর্বের অনুরূপ:

ফার্মগেট থেকে শাহবাগ (আংশিক কাজ): 4 উপায়ে

শাহবাগ থেকে বুয়েট (আংশিক কাজ): 2 উপায়ে

 \therefore সম্পূর্ণ কাজ ফার্মগেট থেকে বুয়েট $(4 \times 2) = 8$ টি উপায়।

এখন, ঐ যে নতুন Superman সার্ভিস, এটা কি আংশিক কাজ না সম্পূর্ণ কাজ? অবশ্যই সম্পূর্ণ কাজ! কেননা, Superman তো সরাসরি ফার্মগেট থেকে বুয়েট পৌঁছে দিবে। অর্থাৎ, এক্ষেত্রে গণনার যোজন বিধি অনুযায়ী এই একটি উপায় যোগ হবে।

∴ মোট উপায়: 8 + 1 = 9 টি

আশা করছি, তোমরা গণনার যোজন বিধি এবং গণনার গুণন বিধি আত্মস্থ করে ফেলেছ। এবার চলো আমরা এদের গাণিতিক সংজ্ঞা শিখে ফেলি।

গণনার যোজন বিধি:

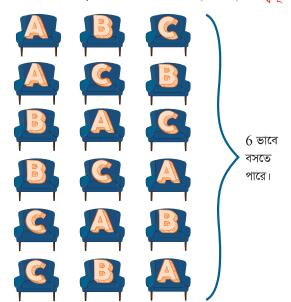
কোনো একটি কাজ যদি x সংখ্যক উপায়ে সম্পন্ন করা যায় এবং অপর একটি কাজ স্বতন্ত্রভাবে y সংখ্যক উপায়ে সম্পন্ন করা যায়, তবে কাজ দুইটি x + y সংখ্যক উপায়ে সম্পন্ন করা যাবে।

গণনার গুণন বিধি:

কোনো কাজ যদি x সংখ্যক উপায়ে এবং ঐ কাজের উপর নির্ভরশীল দ্বিতীয় একটি কাজ যদি y সংখ্যক উপায়ে সম্পন্ন করা যায়, তবে কাজ দুইটি একত্রে x × y সংখ্যক উপায়ে সম্পন্ন করা যাবে।

বিন্যাস (Permutation)

বিন্যাস অর্থ হলো সাজানো। বিন্যাসের মূল বিষয় হলো গণনা। কোনো কিছু মোট কতভাবে সাজানো যায় তার গণনাই হলো বিন্যাস। মাথায় রাখা জরুরি, বিন্যাসের ক্ষেত্রে ক্রম (Order) গুরুতুপূর্ণ।



এসো গল্পের মাধ্যমে বুঝতে চেষ্টা করি।

আবুল (A), বাবুল (B), কাবুল (C) সিনেমা হলে গিয়েছে সিনেমা দেখতে। তাদের কাছে আছে মোট 3 টা সিটের টিকেট। তুমি কি গণনা করতে পারবে

এই 3 সিটে তারা 3 জন মোট কতভাবে বসতে পারে? কট্ট হলে শুরুতেই তালিকা করে নিতে পারো। এখানে, বামপাশের তালিকায় দেখা যাচ্ছে, (A, B, C) এর প্রতিটা ক্রমের জন্য আমরা একেকটা বিন্যাস পাই। এক্ষেত্রে, 3 জনকে 3 টি অবস্থানে সাজানোর মোট উপায় 6 টি। কিন্তু, আমরা এখন গণনার বিধি জানি। তাই এভাবে বোকার মতো তালিকা করে আমরা আর গণনা করব না। আগের সমস্যাটি আমরা এবার বৃদ্ধিমানের

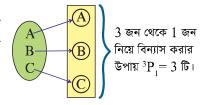
মত চিন্তা করবো।

আবুল (A), বাবুল (B), কাবুলের (C) - 3 জনকে 3 টি সিটে বসাতে হবে।

উচ্চতর গণিত ১ম পত্র : অধ্যায়-০৫

আবুল (A), বাবুল (B) ও কাবুল (C) কে কোন সিটে বসলো তা গুরুত্বপূর্ণ অর্থাৎ তাদের ক্রম (Order) গুরুত্বপূর্ণ। তাই এটি বিন্যাসের অন্তর্ভুক্ত।

চিন্তা কর তো, একেবারে প্রথম সিটে বসানোর জন্য আমাদের কাছে অপশন কতজন? 3 জন [আবুল (A), না হয় বাবুল (B), না হয় কাবুল(C)]। প্রথম সিটে 3 জন থেকে 1 জন বসানো যায় 3 উপায়ে।



3 জন থেকে 1 জন নিয়ে বিন্যাস (Permutation) করার উপায় সংখ্যাকে সহজে বোঝানোর জন্য প্রকাশ করা হয় 3P_1 দ্বারা। আমরা দেখলাম যে, ${}^{3}P_{1}=3$

3 জন অপশন থেকে যেকোনো একজনকে (ধরি, বাবুলকে) প্রথম সিটে বসানো হলো।

এবার এসো দ্বিতীয় সিটের কথায়। দ্বিতীয় সিটের জন্য তোমার কাছে অপশন কতজন? অবশ্যই, 2 জন। কেননা, বাবুল তো একইসাথে প্রথম ও দ্বিতীয় সিটে বসতে পারে না। তাই দ্বিতীয় সিটের জন্য অপশন প্রথম সিটে বসা ব্যক্তি (এক্ষেত্রে, বাবুল) বাদে বাকি 2 জন।

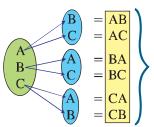
এই, অপশন সংখ্যা দিয়ে আমরা সহজেই মোট বিন্যাস সংখ্যা হিসাব করতে পারি। আমরা পূর্বের মতো চিন্তা করতে পারি। এখানে, কাজ হলো 3 জন থেকে যেকোনো দুইজনকে 2 টি সিটে বসানো।

আমরা দেখেছি, প্রথম সিট পূরণ করার কাজ করা যায় 3 উপায়ে। আবার দ্বিতীয় সিট পূরণের কাজ করা যায় 2 উপায়ে।

এখন বলো তো, প্রথম সিটে একজনকে বসানো অথবা শুধুমাত্র দ্বিতীয় সিটে একজন বসানো সম্পূর্ণ কাজ নাকি আংশিক? অবশ্যই আংশিক কাজ। কেননা, আমাদের সম্পূর্ণ কাজ হলো দুইটি সিট পূর্ণ করা। তাই যেকোনো একটি সিট পুরণ করা অবশ্যই আংশিক কাজ।

গণনার গুণন বিধি থেকে আমরা জেনে এসেছি, আংশিক কাজ থেকে সম্পূর্ণ কাজ পেতে আংশিক কাজ সম্পন্নের উপায় সংখ্যাগুলো (অপশনগুলো) গুণ করে মোট উপায় নির্ণয় করা যায়।

তাহলে 3 জন থেকে যেকোনো দুই জনকে 2 টি সিটে বসানো যাবে: $3 \times 2 = 6$ উপায়ে।



3 জন থেকে 2 জন নিয়ে বিন্যাস করার উপায় ${}^3P_2 = 6$ টি।

3 জন থেকে 2 জন নিয়ে বিন্যাস (Permutation) করার উপায় সংখ্যাকে প্রকাশ করা হয় 3P_2 দ্বারা। দেখা যাচ্ছে যে, $^3P_2=6$

বাকি 2 জন অপশন থেকে যেকোনো একজনকে (ধর: কাবুলকে) দ্বিতীয় সিটে বসানো হলো। এবার বাকি -তৃতীয় অর্থাৎ শেষ সিট। তৃতীয় সিটের জন্য অপশন বাকি মাত্র 1 জন (আবুল)। প্রথম দুইটি সিটে যেহেতু আগেই মানুষ বসানো হয়ে গেছে, তাই শেষ সিটে বাকি যে একজন (আবুল) তাকেই বসতে হবে।

প্রথম সিটের জন্য দ্বিতীয় সিটের জন্য তৃতীয় সিটের জন্য অপশন সংখ্যা

অপশন সংখ্যা

n সংখ্যক বিভিন্ন বর্ণের সবগুলো নিয়ে মোট সাজানো বিন্যাস (Total Permutation of arrangement in n numbers of letters taken all at a time)

উদাহরণ-০৬: নিচের শব্দগুলোর বর্ণসমূহের সবগুলোকে নিয়ে কতগুলো ভিন্ন ভিন্ন শব্দ গঠন করা যায়?

- (i) BANGLADESH
- (ii) UDVASH

সমাধান:

- (i) BANGLADESH শব্দটিতে বর্ণ আছে 10 টি এবং এদের মধ্যে A আছে 2 টি। \therefore মোট বিন্যাস সংখ্যা $=\frac{10!}{2!}$ (Ans.)
- (ii) UDVASH শব্দটিতে বর্ণ আছে 6 টি এবং কোনো বর্ণের পুনরাবৃত্তি নেই। ∴ মোট বিন্যাস সংখ্যা = 6! (Ans.)

উদাহরণ-০৭: নিম্নোক্ত শব্দদ্বয়ের বর্ণমালার বিন্যাসের সংখ্যা নির্ণয় কর।

- (i) ACCOUNTANT
- (ii) ENGINEERING.

সমাধান:

- (i) "ACCOUNTANT" শব্দটিতে 2 টি A, 2টি C, 2 টি N এবং 2 টি T সহ 10 টি বর্ণ আছে।
 - : নির্ণেয় মোট বিন্যাসের সংখ্যা = $\frac{10!}{2!2!2!2!} = \frac{10.9.8.7.6.5.4.3.2.1}{2!.2!2!2!} = \frac{3628800}{16} = 2,26,800$ (Ans.)
- (ii) "ENGINEERING" শব্দটিতে 3 টি E, 3 টি N, 2 টি G এবং 2 টি I সহ মোট 11 টি বর্ণ আছে।
 - ∴ নির্ণেয় বিন্যানের সংখ্যা = $\frac{11!}{3!3!2!2!} = \frac{39916800}{144} = 2,77,200$ (Ans.)

উদাহরণ-০৮: 10 টি বর্ণের কিছু সংখ্যক একজাতীয় এবং বাকীগুলি ভিন্ন ভিন্ন। যদি তাদের সবগুলিকে একত্রে নিয়ে 30240 টি শব্দ গঠন করা যায়, তবে কতগুলি বর্ণ এক জাতীয়।

সমাধান: মনে করি, x সংখ্যক বর্ণ আছে যারা একজাতীয়। প্রশ্নমতে, $\frac{10!}{x!}=30240\Rightarrow x!=120$ \therefore x=5 (Ans.)

উদাহরণ-০৯: প্রমাণ কর যে, 'AMERICA' শব্দটির বর্ণগুলি একত্রে নিয়ে বিন্যাস সংখ্যা 'CANADA' শব্দটির বর্ণগুলি একত্রে নিয়ে বিন্যাস সংখ্যার 21 গুণ। [Ctg.B'03]

সমাধান: AMERICA শব্দটির বর্ণগুলি নিয়ে বিন্যাস সংখ্যা $=\frac{7!}{2!}$ [' \mathbf{A} ' আছে দুইবার]

CANADA শব্দটির বর্ণগুলো নিয়ে বিন্যাস সংখ্যা $=\frac{6!}{3!}$ ['A' আছে তিনবার]

 \therefore বিন্যাস সংখ্যাদ্বয়ের অনুপাত = $\frac{\frac{7!}{2!}}{\frac{6!}{2!}} = \frac{7 \times 6!}{2!} \times \frac{3 \times 2!}{6!} = \frac{7}{1} \times \frac{3}{1} = 21$ (Proved)

উদাহরণ-১০: একটি লাইব্রেরীতে একখানা পুস্তকের 8 কপি, দুইখানা পুস্তকের প্রত্যেকের 3 কপি, তিনখানা পুস্তকের প্রত্যেকের 5 কপি এবং দশখানা পুস্তকের 1 কপি করে আছে। সবগুলি একত্রে নিয়ে কত প্রকারে সাজানো যেতে পারে?

সমাধান: মোট পুস্তক সংখ্যা $= 1 \times 8 + 2 \times 3 + 3 \times 5 + 10 \times 1 = 39$ টি

পুস্তকগুলোকে সাজানো যায় = $\frac{39!}{8! \, 3! \, 5! \, 5! \, 5!} = 8.13 \times 10^{33}$ প্রকারে। (Ans.)

পুনরাবৃত্তি ঘটতে পারে, সেরূপ ক্ষেত্রে বিন্যাস (Permutation in case of repetition)

তোমরা কি পুরাতন আমলের তোমাদের বাবা বা দাদার লকার ব্রিফকেস দেখেছ? সেখানে 3 অঙ্কের একটি পাসওয়ার্ড দেয়া থাকে। সঠিক পাসওয়ার্ড দেওয়া হলে লকারটি খুলে যায়। ডায়ালে 0 থেকে 9; 10 টি অঙ্ক থাকে। লকারে থাকে এরকম 3 টি ডায়াল। যা দিয়ে 3 অঙ্কের যেকোনো বিন্যাস তৈরি করা যায়। তোমরা কি বলতে পারবে লকারে মোট কতরকম পাসওয়ার্ড দেওয়া যাবে?

তোমাদের অনেকের মনে হতে পারে 10 টি অঙ্ক থেকে 3 টি অঙ্ক নিয়ে মোট $^{10}P_3$ টি পাসওয়ার্ড দেওয়া যাবে। যা একটি ভুল ধারণা। কারণ পাসওয়ার্ডের ক্ষেত্রে একই অঙ্ক একাধিকবার ব্যবহারে কোনো বাধা-নিষেধ নেই।

3 টি অঙ্ক দিয়ে যতরকম সংখ্যা তৈরি করা সম্ভব সেটি হবে উত্তর। প্রথম ডায়ালে 10 টি অঙ্কের জন্য অপশন 10 টি। দ্বিতীয় ডায়ালে কি পূর্বের মত অপশন বাকি 9 টি? না! এক্ষেত্রে দ্বিতীয় ডায়ালের জন্যেও অপশন 10 টি। কেননা, একই অঙ্কের পুনরাবৃত্তি ঘটতে পারে অর্থাৎ একই অঙ্ক একাধিকবার ব্যবহার করা যেতে পারে। একইভাবে তৃতীয় ডায়ালের জন্যেও অপশন 10 টি।

∴ গণনার গুণন বিধি অনুসারে, মোট পাসওয়ার্ড সম্ভব:
$$10 \times 10 \times 10 = 10^3$$

— অপশন সংখ্যা

অনেকের ফোনে 4 ডিজিটের Passcode দেয়া থাকে। সর্বোচ্চ কতবারের চেষ্টায় ফোনের লক খোলা সম্ভব?

এক্ষেত্রেও, একই অঙ্কের পুনরাবৃত্তি সম্ভব। তাই প্রতিটা ডিজিটের জন্য অপশন 10 টি করে। অর্থাৎ, 4 টি স্থানের জন্য মোট Passcode বা

বিন্যাস সম্ভব:
$$10 \times 10 \times 10 \times 10 = 10^4$$
 অপশন সংখ্যা

\therefore r টি স্থানের প্রতিটির জন্য n টি অপশন থাকলে মোট বিন্যাস সম্ভব n^r টি।

প্রমাণ: n সংখ্যক ভিন্ন ভিন্ন জিনিস যতবার খুশি ব্যবহার করে r সংখ্যক স্থান পূরণ করতে হবে:

প্রথম স্থানটি পূরণ করা যায় n সংখ্যক উপায়ে। দ্বিতীয় স্থানটিও n সংখ্যক উপায়ে পূরণ করা যাবে, কারণ এক্ষেত্রে পুনরাবৃত্তি ঘটতে পারে। সুতরাং, প্রথম দুইটি স্থান পূরণ করা যায় n imes n = n² উপায়ে।

তৃতীয় স্থানটিও n সংখ্যক উপায়ে পূরণ করা যায়। সুতরাং, প্রথম তিনটি স্থান $n^2 \times n = n^3$ উপায়ে পূরণ করা যায়। এভাবে r সংখ্যক স্থান পূরণ করা যাবে: n^r উপায়ে।

 \therefore n সংখ্যক ভিন্ন ভিন্ন জিনিস যতবার খুশি ব্যবহার করে r সংখ্যক স্থান পূরণ করা যায়: $\mathbf{n}^{\mathbf{r}}$ উপায়ে।

🛕 সতৰ্কতা!

খেরাল রাখবে: r হল কয়টি স্থান এবং n প্রতিটি স্থানের জন্য অপশন সংখ্যা।

অধ্যায়ের শুরুতে করা প্রশ্নের উত্তর খুঁজি

অধ্যায়ের শুরুতে করা প্রশ্নগুলো এসো সমাধানের চেষ্টা করি। 11 ডিজিটের মোট কতটি টেলিটক নম্বর তৈরি করা সম্ভব যেন নাম্বারের শুরুতে 015 থাকে?

11 টি ডিজিটের মধ্যে প্রথম 3 টি ডিজিট নির্দিষ্ট। বাকি 8 ডিজিটের প্রতিটার জন্য অপশন 10 টি করে। অর্থাৎ, 8 টি স্থানের প্রতিটির জন্য অপশন 10 টি করে। \sim মোট টেলিটক নম্বর সম্ভব: 10^8 [দশ কোটি]

সোশাল মিডিয়ায় 10 Character এর একটি পাসওয়ার্ড, যেখানে Character হিসেবে ইংরেজি বড় হাতের অক্ষর (A, B, C... Z) এবং ছোট হাতের অক্ষর (a, b, c ... z) এবং অঙ্ক (0, 1, 2 9) ব্যবহার করা যায়। সর্বোচ্চ কতবারের চেষ্টায় সঠিক পাসওয়ার্ড পাওয়া যাবে? পাসওয়ার্ডের Character মোট 10 টি হলে, মোট 26+26+10=62 টি Character এর প্রতিটি যতবার খুশি ব্যবহার করে, 10 Character এর একটি পাসওয়ার্ড গঠন করতে হবে। অর্থাৎ, 10 টি স্থানের প্রতিটির জন্য অপশন সংখ্যা 62 টি। অর্থাৎ, পাসওয়ার্ড তৈরি সম্ভব $62^{10}=8.39\times 10^{17}$ উপায়ে।

প্রতি সেকেন্ডে একটি পাসওয়ার্ড চেষ্টা করা হলে, সময় লাগবে:

$$\frac{8.39\times10^{17}}{60}$$
মিনিট $=\frac{8.39\times10^{17}}{60\times60}$ ঘন্টা $=\frac{8.39\times10^{17}}{60\times60\times24}$ দিন $=\frac{8.39\times10^{17}}{60\times60\times24\times365}$ বছর $=26.6\times10^9$ বছর $=26.6$ বিলিয়ন বছর। $=2660$ কোটি বছর!!

উদাহরণ-১১: কোনো এলাকায় তিনটি চিঠির বাক্স আছে এবং এক ব্যক্তি কত প্রকারে চারটি চিঠি বাক্সে ফেলতে পারবে?

সমাধান: প্রথম চিঠিটি তিনটি পোস্ট বাক্সের যে কোনোটিতে ফেলতে পারে 3 প্রকারে। তদ্রুপ দ্বিতীয় চিঠিটিও তিনটি বাক্সের যে কোনটিতে 3 প্রকারে ফেলা যায়, তৃতীয় চিঠিও ফেলা যায় 3 প্রকারে এবং চতুর্থ চিঠিও ফেলতে পারে 3 প্রকারে।

 \therefore এদেরকে তিনটি বাক্সে মোট যতভাবে ফেলা যাবে, তার সংখ্যা $=3 \times 3 \times 3 \times 3 = 3^4 = 81$. (Ans.)

টিপিকভিত্তিক বিগত বছরের প্রশ্ন

■ Factorial এবং ⁿP_r সূত্রের ব্যবহার ■ n সংখ্যক বিভিন্ন বর্ণের (জিনিসের) সবগুলো নিয়ে মোট সাজানো বিন্যাস ■ পুনরাবৃত্তি ঘটতে পারে, সেরূপ ক্ষেত্রে বিন্যাস

বোর্ড MCQ ও সমাধান

3n! 4!(n−1)! = 4 হলে n এর মান-01.

[JB'19]

- (a) $\frac{16}{3}$ (b) $\frac{32}{3}$ (c) 16

সমাধান: (d); $\frac{3n!}{4!(n-1)!} = \frac{3 \cdot n \cdot (n-1)!}{4!(n-1)!} = \frac{3n}{4!} = 4 : n = 32$

02. 0! এর মান- [All.B'18] [Ans. c]

- (a) $-\infty$ (b) 0 (c) 1
 - (d) ∞
- $03. \quad \frac{1}{0!} = \overline{\Phi}$ ত?
- [Ctg.B'17] [Ans. c]

- - (a) $-\infty$ (b) 0 (c) 1 (d) ∞
- 6 জন বালক 4 আসনের একটি বেঞ্চে কতভাবে বসতে 04. পারে?

[Ctg.B'17]

- (a) 6!
- (b) 4! (c) ${}^{6}C_{4}$
- (d) ${}^{6}P_{4}$ সমাধান: (d); মোট বিন্যাস সংখ্যা = 6P_4 । [এক্ষেত্রে 2
- জনকে দাড়িয়ে থাকতে হবে। 6 জন বালক 4 জনের বেঞ্চে একসাথে বসতে পারে না]
- COMILLA শব্দের অক্ষরগুলোকে কত প্রকারে সাজানো 05. যায়? [Din.B'19]
 - (a) 5250
 - (b) 5040 (c) 2520
- - সমাধান: (c); 7! = 2520
- (d) 2502
- BANANA শব্দটির সবগুলো বর্ণ ব্যবহার করে কতগুলো 06. শব্দ গঠন করা যায়?
 - [DB'17]

- (a) 720
- (b) 120 (c) 60
 - (d) 6
- সমাধান: (c); $\frac{6!}{3!\times 2!} = 60$
- Destination শব্দটির বর্ণগুলোকে কত প্রকারে সাজানো 07. যায়?

- (a) $\frac{11!}{3!}$ (b) $\frac{11!}{2!2!2!}$ (c) $\frac{8!}{2!2!2!}$ (d) $\frac{8!}{3!}$

সমাধান: (b); মোট 11 টি শব্দ। t, i, n দুইবার করে আছে। ∴ মোট সাজানোর উপায় = $\frac{11!}{2! \times 2! \times 2!}$

এডমিশন MCQ ও সমাধান

08. যদি ${}^{n}P_{5}=60 {}^{n-1}P_{3}$ হয়, তাহলে n এর মান কত?

[RU'20-21]

- (a) 10
- (b) 6
- (c) 12
- (d) কোনটিই নয়

- সমাধান: (a); n(n-1)(n-2)(n-3)(n-4)=60(n-1)(n-2)(n-3)
- \Rightarrow n² 4n = 60 \Rightarrow n² 4n 60 = 0
- \Rightarrow n² 10n + 6n 60 = 0
- \Rightarrow n(n 10) + 6(n 10) = 0 : n = 10
- ⁿP₄ = ⁿP₃ হলে, 'n' এর মান কত? 09. [CU'20-21]
 - (a) 7 (b) 4
 - সমাধান: (b); ⁿP₄ = ⁿP₃
 - \Rightarrow n(n-1)(n-2)(n-3) = n(n-1)(n-2) \Rightarrow n - 3 = 1 \div n = 4
- 10. ⁿP₄ = 6ⁿP₃ হলে, 'n' এর মান কত?

[Agri. Guccho'19-20]

(d) 5

- (a) 9 (b) 10
- (c) 8

(c) 2

- (d) 6
- সমাধান: (a); ${}^{n}P_{4} = 6 \times {}^{n}P_{3}$
- $\Rightarrow \frac{n!}{(n-4)!} = 6 \times \frac{n!}{(n-3)!} \Rightarrow \frac{1}{(n-4)!} = \frac{6}{(n-3)(n-4)!}$
- \Rightarrow n 3 = 6 \therefore n = 9
- একজন শিক্ষক বহুনির্বাচনী প্রশ্ন করতে চান। একই প্রশ্ন 11. সবার জন্য আলাদা আলাদা ক্রমানুযায়ী সাজানো থাকবে। শ্রেণীতে ছাত্রসংখ্যা 30 জন হলে, শিক্ষককে কমপক্ষে কতগুলো প্রশ্ন করতে হবে? [JU'12-13]
 - (a) 5 (b) 50
- (c) 25 (d) 15
- সমাধান: (a); প্রশ্নমতে, n! ≥ 30, 4! = 24, 5!
- $= 120 : n \ge 5$
- An encyclopedia has eight volumes. In how many ways can the eight volumes be replaced on the shelf? [IUT'18-19]
 - (a) 40320 (b) 5040 (c) 362880 (d) 720
- **Solution:** (a); 8! = 40320
- 13. ENGINEERING শব্দটির অক্ষরগুলোকে কতভাবে সাজানো যায়? [BUTEX'15-16]
 - (a) $\frac{11!}{3!3!2!2!}$ (b) $\frac{11!}{4!3!2!}$ (c) $\frac{11!}{3!2!2!}$
- (d) None
- সমাধান: (a); মোট অক্ষর = 11 টি যার মধ্যে E আছে 3
- টি, N আছে 3 টি, G আছে দুইটি, I আছে দুইটি।
- ∴ সাজানোর উপায় = $\frac{11!}{3!3!2!2!}$

চক্ৰ বিন্যাস (Cyclic permutation)

ধরো, Spiderman (), Iron Man (), Captain America (), Thor () পাশাপাশি দাড়িয়ে আলোচনা করছে। তাদেরকে আমরা Avengers নামে ডাকব। তোমরা নিশ্চয়ই বের করতে পারবে তারা মোট কতরকম বিন্যাসে দাঁড়াতে পারে? হ্যাঁ, 4 জনকে একই সারিতে বিন্যাস করা যাবে ${}^4P_4=4$! উপায়ে।

তবে দাঁড়িয়ে আলোচনায় সুবিধা হচ্ছে না দেখে, এবার সকলে গোলটেবিল বৈঠকে বসেছে। তোমার কি ধারণা এবারও মোট বিন্যাস সংখ্যা রৈখিক বিন্যাসের সমান থাকবে? উত্তর হলো: না।

এই চক্র বিন্যাসকে আমরা যদি রৈখিক বিন্যাসে রূপান্তর কতে চাই, তাহলে এই ক্ষেত্রে একটি মাত্র চক্রবিন্যাস থেকে মোট 4 টি রৈখিক বিন্যাস পাওয়া যায়:

Spiderman থেকে শুরু হয়ে ঘড়ির কাঁটার দিকে ঘুরে:

Ironman থেকে শুরু হয়ে ঘড়ির কাঁটার দিকে ঘুরে:

Captain America থেকে শুরু হয়ে ঘড়ির কাঁটার দিকে ঘুরে:

Thor থেকে শুরু হয়ে ঘড়ির কাঁটার দিকে ঘুরে:

তাহলে, এক্ষেত্রে 4 জনের বিন্যাসের ক্ষেত্রে আমরা দেখতে পাই,

4টি রৈখিক বিন্যাস থেকে পাওয়া যায় 1 টি চক্র বিন্যাস।

 \therefore $\mathbf{4}!$ টি ৱৈখিক বিন্যাস থেকে পাওয়া যায় $\frac{4!}{4} = \frac{4\cdot 3!}{4} = \mathbf{3}! = (\mathbf{4} - \mathbf{1})!$ টি চক্র বিন্যাস।

অর্থাৎ, 4 জন সুপারহিরো গোলটেবিলে বসতে পারে (4-1)! উপায়ে।

আমরা জানি, n সংখ্যক ব্যক্তি বা ভিন্ন ভিন্ন বস্তুকে এক সারিতে রৈখিকভাবে বিন্যাস করা যায় **n**! উপায়ে।

একইভাবে, n টি রৈখিক বিন্যাস থেকে পাওয়া যাবে 1 টি চক্রবিন্যাস।

 \therefore n! টি ৱৈখিক বিন্যাস থেকে পাওয়া যাবে $rac{n!}{n} = rac{n(n-1)!}{n} = (n-1)!$ টি চক্রবিন্যাস।

অর্থাৎ, n সংখ্যক ভিন্ন ভিন্ন বস্তুকে চক্রাকারে সাজানো যায় মোট (n – 1)! উপায়ে।

৪৬

চক্রবিন্যাসগুলো দেখে ভিন্ন ভিন্ন মনে হলেও, প্রকৃত অর্থে 4 টি আসলে একই বিন্যাস।

জেনে রাখো

দুইপাশ থেকে দেখা সম্ভব এমন 2 টি চাক্রিক বিন্যাসে যেমন: (মালা) এর ক্ষেত্রে: প্রথমটি ঘড়ির কাঁটার দিকে (clockwise) এবং দ্বিতীয়টি ঘড়ির বিপরীতে (Anti-clockwise) ঘুরলে যদি একই বিন্যাস পাওয়া যায়- তাহলে বিন্যাস দুইটি প্রকৃত অর্থে একই বিন্যাস (মালা) প্রকাশ করে।

মালা যেহেতু দুইপাশ থেকেই দেখা সম্ভব, এজন্য প্রতি দুইটি চাক্রিক বিন্যাস মিলে হয় একটি বিন্যাস। অর্থাৎ, 5 টি ভিন্ন ভিন্ন ফুল নিয়ে চাক্রিক বিন্যাস সম্ভব: $(\mathbf{5}-\mathbf{1})!$ প্রতি 2 টি চাক্রিক বিন্যাসে তৈরি হয় 1 টি ভিন্ন মালা

 \therefore প্রতি (5-1)! চাক্রিক বিন্যাসে তৈরি হবে $\frac{(5-1)!}{2}$ টি ভিন্ন মালা

অতএব, n সংখ্যক ভিন্ন ভিন্ন বস্তু হতে সবগুলো নিয়ে গোলাকার মালা তৈরি সম্ভব মোট $\frac{(n-1)!}{2}$ টি।

দুইপাশ থেকে দেখা সম্ভব এমন চাক্রিক বিন্যাসের আরেকটি উদাহরণ হলো: নাগরদোলা।

🗢 অনুধাবন কর:

20 জন ব্যক্তির প্রত্যেককে নিয়ে একটি নাগরদোলার মোট কতরকম বিন্যাস সম্ভব? নাগরদোলা চক্রাকার বিন্যাস এবং দুইপাশ থেকেই দেখা সম্ভব। অর্থাৎ, 20 জন ব্যক্তি নিয়ে নাগরদোলার বিন্যাস সম্ভব: $\frac{(20-1)!}{2} = \frac{19!}{2}$ সংখ্যক এখন বলো তো, 20 জন নর্তকী বৃত্তাকারে নাচলে তাদের মোট কত রকম বিন্যাস সম্ভব? উত্তর হলো: 20 জন নর্তকীর বিন্যাস সম্ভব: (20-1)! = 19! উপায়ে। আমার বিশ্বাস তোমরা এটি বৃঝতে পেরেছো।

উদাহরণ-৫৩: 10 জন লোক কতভাবে একটি গোল টেবিলের পার্শ্বে আসন গ্রহণ করতে পারে?

সমাধান: 10 জন লোকের ক্ষেত্রে, 1 জনকে স্থির রেখে (10-1)!=9! উপায়ে আসন গ্রহণ করা যায়।

উদাহরণ-৫৪: 12 বিভিন্ন ধরনের মুক্তা দিয়ে কত ভাবে মুক্তার হার তৈরি করা যাবে?

[BUET'12-13]

সমাধান:

>	২	9	8	8	9	২	2
১২			Č	Œ			১২
77			હ	৬			77
20	৯	b	٩	٩	ъ	৯	20
বিন্যাস–a				বিন্যাস–b			

বিন্যাস a কে অন্যপাশ থেকে দেখলে বিন্যাস হিসেবেই দেখা যায়। মুক্তার হারের ক্ষেত্রেও বিন্যাস সংখ্যা = (12-1)! এর অর্ধেক। $\therefore \frac{11!}{2}$ ভাবে হার তৈরি করা যায়। (Ans.)

উদাহরণ-৫৫: 15 সদস্যের একটি কমিটিকে গোলটেবিলে 15 টি আসনে কতভাবে বসানো যায়? প্রধান অতিথিকে মাঝের আসনে বসিয়ে তাদেরকে একটি লম্বা টেবিলে 15 টি আসনে কতভাবে বসানো যায় তা নির্ণয় কর।

সমাধান: গোল টেবিলে 15 টি আসনে বসানো যায় =(15-1)!=14! উপায়ে। লম্বা টেবিলে প্রধান অতিথিকে স্থির রেখে 14 টি আসনে বসানো যায় 14! উপায়ে। (Ans.)

উদাহরণ-৫৬: দুই জন বিজ্ঞান বিভাগের ছাত্রকে পাশাপাশি না বসিয়ে 10 জন মানবিক বিভাগের ছাত্র ও 7 জন বিজ্ঞান বিভাগের ছাত্রকে কতভাবে একটি গোল টেবিলের চারপার্শ্বে সাজানো যাবে?

সমাধান: 10 জন মানবিক বিভাগের ছাত্রের মাঝের 10 টি অবস্থান 7 জন বিজ্ঞান বিভাগের ছাত্রকে বসানো যায় $= {}^{10}P_7$ ভাবে আবার, 10 জন মানবিক বিভাগের ছাত্র চক্রাকারে বসতে পারে = (10-1)! = 9! ভাবে \therefore মোট উপায় $= {}^{10}P_7 \times 9!$ (Ans.)

নিজে করো

- 01. 8 টি প্রশ্নের প্রতিটিতে একটি করে বিকল্প প্রশ্ন আছে। কতভাবে এক বা একাধিক প্রশ্ন বাছাই করা যাবে? [Ans: $f 3^8-1$]
- 02. একটি গ্রন্থাগারে 12 খানা পুস্তক আছে। যার 5 খানা বীজগণিত, 4 খানা জ্যামিতি এবং 3 খানা ত্রিকোণমিতি। যে কোন সংখ্যক পুস্তক নিয়ে কত রকমে বাছাই করা সম্ভব হবে?
- 03. একটি ঝুড়িতে 6 টি একজাতীয় লাল বল, 4 টি একজাতীয় সবুজ বল এবং 5 টি ভিন্ন ভিন্ন রকমের নীল বল আছে।
 - (i) কত উপায়ে ঝুড়ি থেকে এক বা একাধিক বল বাছাই করা যাবে?

[Ans: (i) 1119, (ii) 744]

- (ii) প্রতিটি রঙের কমপক্ষে একটি করে বল বাছাই করতে হবে এই শর্তে কত উপায়ে বলগুলো বাছাই করা যাবে?
- 04. 7 টি আম, 5 টি পেয়ারা এবং 3 টি আপেল থেকে কমপক্ষে একটি ফল কত উপায়ে নেওয়া যাবে?

[Ans: 191]

- 05. প্রমাণ কর যে, ${}^{8}C_{4} + {}^{8}C_{3} + {}^{9}C_{3} = 210$
- 06. প্রমাণ কর যে, ${}^{n}C_{r} + {}^{n}C_{r+1} + {}^{n+1}C_{r} = {}^{n+2}C_{r+1}$

সমাবেশের মাধ্যমে শব্দ গঠন (Word formation through combination)

মনে করো, ONTOR শব্দের 5 টি বর্ণ থেকে 3 টি নিয়ে কতগুলো সমাবেশ তৈরি করা যায় নির্ণয় করতে হবে। "ONTOR" শব্দে মোট বর্ণ 5 টি। এর মধ্যে 2 টি O বর্ণ একই প্রকার।

সতৰ্কতা!

এবার কিন্তু সমাধান ⁵C₃ হবে না। যেহেতু, একই প্রকারের জিনিস রয়েছে তাই ⁵C₃ হিসাব করলে একই সমাবেশ এর গণনা একাধিকবার হবে। ফলে প্রাপ্ত সমাবেশ সংখ্যা প্রকৃত সমাবেশ সংখ্যার চেয়ে বেশি হবে। সবগুলো সমাবেশ নিজে লেখার চেষ্টা করে দেখ।

এই সমস্যা সমাধানের জন্য 3 টি বর্ণের সমাবেশ তৈরির জন্য আমাদের আলাদা আলাদা Case নিয়ে চিন্তা করতে হবে।

O বর্ণটি একবারও না নিয়ে:

এক্ষেত্রে O বাদে বাকি 3 টি ভিন্ন ভিন্ন বর্ণ থেকে 3 টি বাছাই হবে: ${}^3\mathbf{C}_3 = {}^{5-2}\mathbf{C}_3$ উপায়ে।

বর্ণটি একবার নিয়ে:

এক্ষেত্রে ${
m O}$ বাদে, বাকি 3 টি ভিন্ন ভিন্ন বর্ণ থেকে 2 টি বাছাই হবে: ${}^3{
m C}_2={}^{5-2}{
m C}_{3-1}$ উপায়ে।

O বর্ণটি দুইবার নিয়ে:

এক্ষেত্রে O বাদে বাকি 3 টি ভিন্ন ভিন্ন বর্ণ থেকে 1 টি বাছাই হবে: ${}^3\mathbf{C_1} = {}^{5-2}\mathbf{C_{3-2}}$ উপায়ে।

প্রতিটি Case যেহেতু একেকটি পূর্ণকাজ, তাই গণনার যোজন বিধি অনুসারে মোট সমাবেশ সংখ্যা হবে:

$${}^{3}C_{3} + {}^{3}C_{2} + {}^{3}C_{1} = {}^{5-2}C_{3} + {}^{5-2}C_{3-1} + {}^{5-2}C_{3-2}$$

গাণিতিকভাবে প্রকাশ করা যায়: $\sum_{i=0}^{2}$ ্মাট বণ্ড্র প্রকার বর্ণ $\sum_{i=0}^{5-2} C_{3-i}$ ্র ক্রাটি বর্ণের সমারে

অর্থাৎ, মোট বস্তু n সংখ্যক, তার মধ্যে একই প্রকার m সংখ্যক এবং বাকিগুলো ভিন্ন ভিন্ন হলে, তা থেকে নির্দিষ্ট r সংখ্যক বস্তু নিয়ে সমাবেশ সংখ্যা হবে: $\sum_{i=0}^{m} n-mC_{r-i}$

উদাহরণ-৮৫: 105 এর প্রকৃত উৎপাদক সংখ্যা নির্ণয় কর।

সমাধান: $105 = 3 \times 5 \times 7 = 3^1 \times 5^1 \times 7^1$

অতএব, প্রকৃত উৎপাদক সংখ্যা: $(1+1) \times (1+1) \times (1+1) - 1 = 7$ (Ans.)

উদাহরণ-৮৬: 277200 সংখ্যাটির মোট উৎপাদক সংখ্যা নির্ণয় কর।

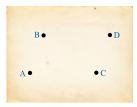
সমাধান:

 $\therefore 277200 = 2^4 \times 3^2 \times 5^2 \times 7^1 \times 11^1$

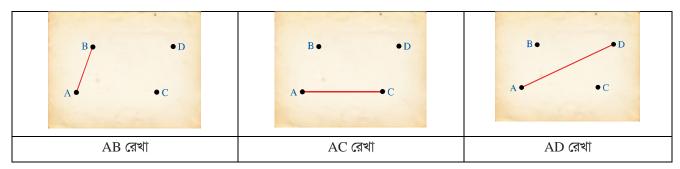
 \therefore মোট উৎপাদক সংখ্যা = $(4+1) \times (2+1) \times (2+1) \times (1+1) \times (1+1) = 180$ টি (Ans.)

বিন্দু হতে সরলরেখা, ত্রিভুজ, বহুভুজ, কর্ণ ও তল গঠন (Construct straight lines, triangles, polygons, diagonals and planes from points)

মনে করো, মুসাব খাতায় 4 টি বিন্দু ইচ্ছামতো বসিয়ে সমরেখ নয় এমনভাবে সেগুলোর নাম দিয়েছে A, B, C, D. তুমি কি বলতে পারবে ঐ 4 টি বিন্দু দিয়ে মোট কতগুলো সরলরেখা তৈরি করা যাবে?



এটা নিশ্চয় কঠিন কিছু নয়। যেকোনো দুইটি বিন্দু জোড়া লাগিয়ে দিলেই একটি সরলরেখা পাওয়া যায়। অর্থাৎ, সরলরেখা তৈরির জন্য তোমার ঐ 4 টি বিন্দু থেকে 2 টি বাছাই করতে হবে। যতভাবে 4 টি বিন্দু থেকে 2 টি বাছাই করা যায় - ততগুলো সরলরেখা তৈরি করা যাবে। অর্থাৎ, ${}^4C_2 = 6$ টি (AB, AC, AD, BC, BD, CD) সরলরেখা পাওয়া যাবে।



Brainstorming Question

- 01. একটি পার্টিতে একজনের বেশি করে ছেলে এবং মেয়ে আছে। প্রতি ছেলে সব মেয়েদের সাথে হ্যান্ডশেক করে, কিন্তু কোনো ছেলের সঙ্গে করে না। মেয়েরা বাকি সবার সঙ্গে হ্যান্ডেশেক করে। যদি পার্টিতে মোট 40 টি হ্যান্ডশেক হয়ে থাকে, সেখানে ছেলে এবং মেয়ের সংখ্যা কয়জন ছিল?
- 02. যেকোনো ধনাত্মক পূর্ণসংখ্যা n এবং k $(n \ge k)$ এর জন্য প্রমাণ করো, $\binom{n+1}{k+1} = \binom{k}{k} + \binom{k+1}{k} + \dots \binom{n}{k}$
- $\{1,2,\ldots,n\}$ -এর উপাদান গুলো কয়ভাবে সাজানো যায় যেন পরপর দুটি উপাদানের যোগফল বিজোড় হয়? যেখানে n একটি ধনাত্মক পূর্ণসংখ্যা। [Ans: n জোড় হলে $2\left(\frac{n}{2}\right)!^2$, n বিজোড় হলে $2\left(\frac{n-1}{2}\right)!\left(\frac{n+1}{2}\right)!$]
- 04. এমন কয়টি (a,b,c,d) আছে যেন a+b+c+d=10 হয়, যেখানে a,b,c,d হলো অঋণাত্মক পূর্ণ সংখ্যা। $Ans: \frac{13!}{3!\times 10!}$
- 05. একটি বৃত্তের উপর তুমি n-সংখ্যক বিন্দু নিলে এবং প্রতিটি বিন্দুর জোড়ার মধ্যের রেখাংশ আঁকলে। এই রেখাংশগুলো বৃত্তটিকে সর্বোচ্চ কয়টি অংশে ভাগ করতে পারে? ধরে নাও, $n \geq 4$. [Ans: ${}^{n}C_{4} + {}^{n}C_{2} + 1$]

একত্রে সব গুরুত্বপূর্ণ সূত্র (All Important Formulae in a Body)

- lacktriangle (i) n সংখ্যক জিনিসের i তম $[1 \leq i \leq n]$ জিনিসটি নেয়ার জন্য m_i সংখ্যক উপায় থাকলে, n সংখ্যক জিনিস নিয়ে মোট উপায়ের বিন্যাস সংখ্যা $m_1 imes m_2 imes m_3 imes \cdots imes m_n = \prod\limits_{i=1}^n m_i$
 - (ii) যেকোনো $n \in \mathbb{N}$ এর জন্য $n! = n(n-1)(n-2) \cdots 3 \cdot 2 \cdot 1 = n(n-1)!$ আর 0! = 1
- 🗅 (i) n- সংখ্যক বিভিন্ন জিনিস হতে প্রতিবারে r সংখ্যক জিনিস নিয়ে সাজানো ব্যবস্থা, $^{
 m n}$ Pr
 - $(ii) \quad \left(^{n}P_{r}=n(n-1)(n-2)\cdots(n-r+1)=\frac{n!}{(n-r)!} \; ; [r\leq n] \; \left[\text{যদি } r>n \; \text{হয়, তাহলে } ^{n}P_{r}=0 \right]$
 - (iii) n- সংখ্যক জিনিসের মধ্যে r_1 সংখ্যক এক প্রকার, r_2 সংখ্যক এক প্রকার \cdots r_k সংখ্যক এক প্রকার এবং বাকিগুলো ভিন্ন হলে (যেখানে $r_1+r_2+r_3+\cdots+r_k\leq n$), বিন্যাস সংখ্যা $=\frac{n!}{r_1!r_2!r_3!\cdots r_k!}$
- lacktriangle চক্রবিন্যাসের ক্ষেত্রে বিন্যাস সংখ্যা $= rac{\mathrm{n!}}{\mathrm{n}} = (\mathrm{n} 1)!$ [Reflections typically count as distinct permutations while rotations don't]
- - (ii) ${}^{n}C_{r} = {}^{n}C_{n-r}$
 - (iii) ${}^{n}C_{r} + {}^{n}C_{r-1} = {}^{n+1}C_{r}$
 - (iv) ${}^{n}C_{0} + {}^{n}C_{1} + {}^{n}C_{2} + \dots + {}^{n}C_{n} = 2^{n}$
- $oldsymbol{1}$ (i) m_1,m_2,m_3,\cdots,m_k সংখ্যার বিভিন্ন গ্রুপ বা সেট (প্রত্যেক গ্রুপ পরস্পর নিম্ছেদ সেট) থেকে যথাক্রমে r_1,r_2,r_3,\cdots,r_k নিয়ে সমাবেশ সংখ্যা $m_1C_{r_1} imes m_2C_{r_2} imes m_3C_{r_3} imes \cdots imes m_kC_{r_k}=\prod\limits_{i=1}^k m_iC_{r_i}$
 - (ii) যেকোনো বিন্যাসে প্রত্যেকটি জিনিস r সংখ্যক বার পর্যন্ত পুনরাবৃত্ত হতে পারলে, n সংখ্যক বিভিন্ন জিনিসের r সংখ্যক একবারে নিয়ে বিন্যাস সংখ্যা = n^r
- ⇒ (i) প্রত্যেক অঙ্ককে প্রত্যেক সংখ্যায় একবার মাত্র ব্যবহার করে n (2 < n ≤ 9) সংখ্যক অশূন্য ভিন্ন ভিন্ন অঙ্ক দ্বারা যতগুলি
 সংখ্যা গঠন করা যায় তাদের সমষ্টি = অঙ্কগুলির সমষ্টি × (n − 1)! × n সংখ্যক 1 দ্বারা গঠিত সংখ্যা।
 </p>